Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices

Unclassifiable-interstitial lung disease (uILD) represents a heterogeneous collection of pathologies encompassing those fibrosing lung diseases which do not fulfill current diagnostic criteria. We evaluated baseline and longitudinal functional and CT (visual and quantitative computer [CALIPER] analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory medicine 2017-09, Vol.130, p.43-51
Hauptverfasser: Jacob, Joseph, Bartholmai, Brian J., Rajagopalan, Srinivasan, Egashira, Ryoko, Brun, Anne Laure, Kokosi, Maria, Nair, Arjun, Walsh, Simon L.F., Karwoski, Ronald, Nicholson, Andrew G., Hansell, David M., Wells, Athol U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 43
container_title Respiratory medicine
container_volume 130
creator Jacob, Joseph
Bartholmai, Brian J.
Rajagopalan, Srinivasan
Egashira, Ryoko
Brun, Anne Laure
Kokosi, Maria
Nair, Arjun
Walsh, Simon L.F.
Karwoski, Ronald
Nicholson, Andrew G.
Hansell, David M.
Wells, Athol U.
description Unclassifiable-interstitial lung disease (uILD) represents a heterogeneous collection of pathologies encompassing those fibrosing lung diseases which do not fulfill current diagnostic criteria. We evaluated baseline and longitudinal functional and CT (visual and quantitative computer [CALIPER] analysis) variables to identify outcome predictors in uILD. Consecutive patients with uILD on multidisciplinary review (n = 95) had baseline functional (FVC, DLco, CPI [composite physiologic index]) and CT features (visual evaluation: CT pattern, fibrosis extent, honeycombing presence, traction bronchiectasis severity, pulmonary artery (PA) diameter; CALIPER evaluation: fibrosis extent, pulmonary vessel volume (PVV)) examined in univariate and multivariate Cox regression models. Change in functional and CT variables were examined in a patient subset (n = 37), to identify indicators of outcome. On univariate analysis, CPI was the most powerful functional predictor of mortality (p 
doi_str_mv 10.1016/j.rmed.2017.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973457393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0954611117302019</els_id><sourcerecordid>1933580129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-78520b851a02d8c772949806b3d515f8ba8c7e53f1cb535b1ed820d554baedfc3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl5ewIUU3LjpeJI0vYgbGbyB4MbZCSFNTiWlk45JK_j2ps7MxoVwIHDy_T-Hj5BzCnMKNL9u536FZs6AFnOIA8UemVHBWcohz_bJDCqRpTml9Igch9ACQJVlcEiOWMUgzzmbkfel050KwTZW1R2m1g3ow2AHq7qkG91HYmxAFfAmeR0H3a8wWXs0Vg-2d8kYbCQWb4lyJmlG97uNQesigeGUHDSqC3i2fU_I8uH-bfGUvrw-Pi_uXlKdsXJIi1IwqEtBFTBT6qJgVVaVkNfcCCqaslZxiYI3VNeCi5qiKRkYIbJaoWk0PyFXm9617z9HDINc2aCx65TDfgySVgXPRMErHtHLP2jbjz7ePFGcixIoqyLFNpT2fQgeG7n2dqX8t6QgJ_eylZN7ObmXEAeKGLrYVo_19LeL7GRH4HYDYHTxZdHLoC06HXV61IM0vf2v_we2HpVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933580129</pqid></control><display><type>article</type><title>Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jacob, Joseph ; Bartholmai, Brian J. ; Rajagopalan, Srinivasan ; Egashira, Ryoko ; Brun, Anne Laure ; Kokosi, Maria ; Nair, Arjun ; Walsh, Simon L.F. ; Karwoski, Ronald ; Nicholson, Andrew G. ; Hansell, David M. ; Wells, Athol U.</creator><creatorcontrib>Jacob, Joseph ; Bartholmai, Brian J. ; Rajagopalan, Srinivasan ; Egashira, Ryoko ; Brun, Anne Laure ; Kokosi, Maria ; Nair, Arjun ; Walsh, Simon L.F. ; Karwoski, Ronald ; Nicholson, Andrew G. ; Hansell, David M. ; Wells, Athol U.</creatorcontrib><description>Unclassifiable-interstitial lung disease (uILD) represents a heterogeneous collection of pathologies encompassing those fibrosing lung diseases which do not fulfill current diagnostic criteria. We evaluated baseline and longitudinal functional and CT (visual and quantitative computer [CALIPER] analysis) variables to identify outcome predictors in uILD. Consecutive patients with uILD on multidisciplinary review (n = 95) had baseline functional (FVC, DLco, CPI [composite physiologic index]) and CT features (visual evaluation: CT pattern, fibrosis extent, honeycombing presence, traction bronchiectasis severity, pulmonary artery (PA) diameter; CALIPER evaluation: fibrosis extent, pulmonary vessel volume (PVV)) examined in univariate and multivariate Cox regression models. Change in functional and CT variables were examined in a patient subset (n = 37), to identify indicators of outcome. On univariate analysis, CPI was the most powerful functional predictor of mortality (p &lt; 0.0001). Visual traction bronchiectasis (p &lt; 0.0001), PA diameter (p &lt; 0.0001) and honeycombing presence (p = 0.0001) and CALIPER PVV (p = 0.0003) were the strongest CT outcome predictors. On multivariate analysis of baseline indices, traction bronchiectasis (p = 0.003), PA diameter (p = 0.003) and CPI (p = 0.0001) independently predicted mortality. Colinearity with functional indices precluded the evaluation of CALIPER PVV in multivariate models. On evaluation of longitudinal variables, increasing CALIPER fibrosis extent was the strongest outcome predictor, and remained so following adjustment for baseline disease severity, and when FVC declines were marginal. In uILD patients, CPI, traction bronchiectasis severity and PA diameter independently predicted outcome at baseline. Increasing fibrosis extent measured by CALIPER was the most powerful index of outcome regardless of baseline disease severity and strongly predicted outcome in patients with marginal FVC declines. •At baseline in uILD the composite physiologic index independently predicts survival.•PA diameter and traction bronchiectasis scores also independently predict mortality.•Change in CALIPER fibrosis scores independently predict survival in uILD.•Change in CALIPER fibrosis scores better predicts survival than baseline measures.•CALIPER fibrosis extent independently predicts outcome when FVC decline is marginal.</description><identifier>ISSN: 0954-6111</identifier><identifier>EISSN: 1532-3064</identifier><identifier>DOI: 10.1016/j.rmed.2017.07.007</identifier><identifier>PMID: 29206632</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aged ; Automation ; Bronchiectasis ; Bronchiectasis - diagnostic imaging ; Carbon monoxide ; Carbon Monoxide - metabolism ; Computed tomography ; Connective Tissue Diseases - diagnostic imaging ; Connective Tissue Diseases - mortality ; Connective Tissue Diseases - physiopathology ; Coronary vessels ; Diagnostic systems ; Emphysema ; Evaluation ; Female ; Fibrosis ; Forced Expiratory Volume - physiology ; Humans ; Idiopathic Pulmonary Fibrosis - diagnostic imaging ; Idiopathic Pulmonary Fibrosis - mortality ; Idiopathic Pulmonary Fibrosis - physiopathology ; Longitudinal analysis ; Lung - diagnostic imaging ; Lung - pathology ; Lung - physiopathology ; Lung diseases ; Lung Diseases, Interstitial - diagnostic imaging ; Lung Diseases, Interstitial - mortality ; Lung Diseases, Interstitial - physiopathology ; Male ; Medical imaging ; Mortality ; Multivariate Analysis ; Outcome Assessment (Health Care) ; Pathology ; Patients ; Pneumonia ; Predictions ; Predictive Value of Tests ; Prognosis ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Artery - anatomy &amp; histology ; Pulmonary Artery - diagnostic imaging ; Pulmonary fibrosis ; Pulmonary hypertension ; Quantitative CT ; Regression analysis ; Respiratory Function Tests - methods ; Sarcoidosis ; Severity of Illness Index ; Tomography, X-Ray Computed - methods ; Unclassifiable interstitial lung disease ; Veins &amp; arteries ; Visual perception ; Vital Capacity - physiology</subject><ispartof>Respiratory medicine, 2017-09, Vol.130, p.43-51</ispartof><rights>2017</rights><rights>Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-78520b851a02d8c772949806b3d515f8ba8c7e53f1cb535b1ed820d554baedfc3</citedby><cites>FETCH-LOGICAL-c428t-78520b851a02d8c772949806b3d515f8ba8c7e53f1cb535b1ed820d554baedfc3</cites><orcidid>0000-0002-8054-2293 ; 0000-0001-7834-6579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rmed.2017.07.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29206632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Joseph</creatorcontrib><creatorcontrib>Bartholmai, Brian J.</creatorcontrib><creatorcontrib>Rajagopalan, Srinivasan</creatorcontrib><creatorcontrib>Egashira, Ryoko</creatorcontrib><creatorcontrib>Brun, Anne Laure</creatorcontrib><creatorcontrib>Kokosi, Maria</creatorcontrib><creatorcontrib>Nair, Arjun</creatorcontrib><creatorcontrib>Walsh, Simon L.F.</creatorcontrib><creatorcontrib>Karwoski, Ronald</creatorcontrib><creatorcontrib>Nicholson, Andrew G.</creatorcontrib><creatorcontrib>Hansell, David M.</creatorcontrib><creatorcontrib>Wells, Athol U.</creatorcontrib><title>Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices</title><title>Respiratory medicine</title><addtitle>Respir Med</addtitle><description>Unclassifiable-interstitial lung disease (uILD) represents a heterogeneous collection of pathologies encompassing those fibrosing lung diseases which do not fulfill current diagnostic criteria. We evaluated baseline and longitudinal functional and CT (visual and quantitative computer [CALIPER] analysis) variables to identify outcome predictors in uILD. Consecutive patients with uILD on multidisciplinary review (n = 95) had baseline functional (FVC, DLco, CPI [composite physiologic index]) and CT features (visual evaluation: CT pattern, fibrosis extent, honeycombing presence, traction bronchiectasis severity, pulmonary artery (PA) diameter; CALIPER evaluation: fibrosis extent, pulmonary vessel volume (PVV)) examined in univariate and multivariate Cox regression models. Change in functional and CT variables were examined in a patient subset (n = 37), to identify indicators of outcome. On univariate analysis, CPI was the most powerful functional predictor of mortality (p &lt; 0.0001). Visual traction bronchiectasis (p &lt; 0.0001), PA diameter (p &lt; 0.0001) and honeycombing presence (p = 0.0001) and CALIPER PVV (p = 0.0003) were the strongest CT outcome predictors. On multivariate analysis of baseline indices, traction bronchiectasis (p = 0.003), PA diameter (p = 0.003) and CPI (p = 0.0001) independently predicted mortality. Colinearity with functional indices precluded the evaluation of CALIPER PVV in multivariate models. On evaluation of longitudinal variables, increasing CALIPER fibrosis extent was the strongest outcome predictor, and remained so following adjustment for baseline disease severity, and when FVC declines were marginal. In uILD patients, CPI, traction bronchiectasis severity and PA diameter independently predicted outcome at baseline. Increasing fibrosis extent measured by CALIPER was the most powerful index of outcome regardless of baseline disease severity and strongly predicted outcome in patients with marginal FVC declines. •At baseline in uILD the composite physiologic index independently predicts survival.•PA diameter and traction bronchiectasis scores also independently predict mortality.•Change in CALIPER fibrosis scores independently predict survival in uILD.•Change in CALIPER fibrosis scores better predicts survival than baseline measures.•CALIPER fibrosis extent independently predicts outcome when FVC decline is marginal.</description><subject>Aged</subject><subject>Automation</subject><subject>Bronchiectasis</subject><subject>Bronchiectasis - diagnostic imaging</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - metabolism</subject><subject>Computed tomography</subject><subject>Connective Tissue Diseases - diagnostic imaging</subject><subject>Connective Tissue Diseases - mortality</subject><subject>Connective Tissue Diseases - physiopathology</subject><subject>Coronary vessels</subject><subject>Diagnostic systems</subject><subject>Emphysema</subject><subject>Evaluation</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Forced Expiratory Volume - physiology</subject><subject>Humans</subject><subject>Idiopathic Pulmonary Fibrosis - diagnostic imaging</subject><subject>Idiopathic Pulmonary Fibrosis - mortality</subject><subject>Idiopathic Pulmonary Fibrosis - physiopathology</subject><subject>Longitudinal analysis</subject><subject>Lung - diagnostic imaging</subject><subject>Lung - pathology</subject><subject>Lung - physiopathology</subject><subject>Lung diseases</subject><subject>Lung Diseases, Interstitial - diagnostic imaging</subject><subject>Lung Diseases, Interstitial - mortality</subject><subject>Lung Diseases, Interstitial - physiopathology</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Mortality</subject><subject>Multivariate Analysis</subject><subject>Outcome Assessment (Health Care)</subject><subject>Pathology</subject><subject>Patients</subject><subject>Pneumonia</subject><subject>Predictions</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Artery - anatomy &amp; histology</subject><subject>Pulmonary Artery - diagnostic imaging</subject><subject>Pulmonary fibrosis</subject><subject>Pulmonary hypertension</subject><subject>Quantitative CT</subject><subject>Regression analysis</subject><subject>Respiratory Function Tests - methods</subject><subject>Sarcoidosis</subject><subject>Severity of Illness Index</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Unclassifiable interstitial lung disease</subject><subject>Veins &amp; arteries</subject><subject>Visual perception</subject><subject>Vital Capacity - physiology</subject><issn>0954-6111</issn><issn>1532-3064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMoOl5ewIUU3LjpeJI0vYgbGbyB4MbZCSFNTiWlk45JK_j2ps7MxoVwIHDy_T-Hj5BzCnMKNL9u536FZs6AFnOIA8UemVHBWcohz_bJDCqRpTml9Igch9ACQJVlcEiOWMUgzzmbkfel050KwTZW1R2m1g3ow2AHq7qkG91HYmxAFfAmeR0H3a8wWXs0Vg-2d8kYbCQWb4lyJmlG97uNQesigeGUHDSqC3i2fU_I8uH-bfGUvrw-Pi_uXlKdsXJIi1IwqEtBFTBT6qJgVVaVkNfcCCqaslZxiYI3VNeCi5qiKRkYIbJaoWk0PyFXm9617z9HDINc2aCx65TDfgySVgXPRMErHtHLP2jbjz7ePFGcixIoqyLFNpT2fQgeG7n2dqX8t6QgJ_eylZN7ObmXEAeKGLrYVo_19LeL7GRH4HYDYHTxZdHLoC06HXV61IM0vf2v_we2HpVY</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Jacob, Joseph</creator><creator>Bartholmai, Brian J.</creator><creator>Rajagopalan, Srinivasan</creator><creator>Egashira, Ryoko</creator><creator>Brun, Anne Laure</creator><creator>Kokosi, Maria</creator><creator>Nair, Arjun</creator><creator>Walsh, Simon L.F.</creator><creator>Karwoski, Ronald</creator><creator>Nicholson, Andrew G.</creator><creator>Hansell, David M.</creator><creator>Wells, Athol U.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>ASE</scope><scope>FPQ</scope><scope>H94</scope><scope>K6X</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8054-2293</orcidid><orcidid>https://orcid.org/0000-0001-7834-6579</orcidid></search><sort><creationdate>201709</creationdate><title>Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices</title><author>Jacob, Joseph ; Bartholmai, Brian J. ; Rajagopalan, Srinivasan ; Egashira, Ryoko ; Brun, Anne Laure ; Kokosi, Maria ; Nair, Arjun ; Walsh, Simon L.F. ; Karwoski, Ronald ; Nicholson, Andrew G. ; Hansell, David M. ; Wells, Athol U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-78520b851a02d8c772949806b3d515f8ba8c7e53f1cb535b1ed820d554baedfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Automation</topic><topic>Bronchiectasis</topic><topic>Bronchiectasis - diagnostic imaging</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - metabolism</topic><topic>Computed tomography</topic><topic>Connective Tissue Diseases - diagnostic imaging</topic><topic>Connective Tissue Diseases - mortality</topic><topic>Connective Tissue Diseases - physiopathology</topic><topic>Coronary vessels</topic><topic>Diagnostic systems</topic><topic>Emphysema</topic><topic>Evaluation</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Forced Expiratory Volume - physiology</topic><topic>Humans</topic><topic>Idiopathic Pulmonary Fibrosis - diagnostic imaging</topic><topic>Idiopathic Pulmonary Fibrosis - mortality</topic><topic>Idiopathic Pulmonary Fibrosis - physiopathology</topic><topic>Longitudinal analysis</topic><topic>Lung - diagnostic imaging</topic><topic>Lung - pathology</topic><topic>Lung - physiopathology</topic><topic>Lung diseases</topic><topic>Lung Diseases, Interstitial - diagnostic imaging</topic><topic>Lung Diseases, Interstitial - mortality</topic><topic>Lung Diseases, Interstitial - physiopathology</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Mortality</topic><topic>Multivariate Analysis</topic><topic>Outcome Assessment (Health Care)</topic><topic>Pathology</topic><topic>Patients</topic><topic>Pneumonia</topic><topic>Predictions</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Artery - anatomy &amp; histology</topic><topic>Pulmonary Artery - diagnostic imaging</topic><topic>Pulmonary fibrosis</topic><topic>Pulmonary hypertension</topic><topic>Quantitative CT</topic><topic>Regression analysis</topic><topic>Respiratory Function Tests - methods</topic><topic>Sarcoidosis</topic><topic>Severity of Illness Index</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Unclassifiable interstitial lung disease</topic><topic>Veins &amp; arteries</topic><topic>Visual perception</topic><topic>Vital Capacity - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Joseph</creatorcontrib><creatorcontrib>Bartholmai, Brian J.</creatorcontrib><creatorcontrib>Rajagopalan, Srinivasan</creatorcontrib><creatorcontrib>Egashira, Ryoko</creatorcontrib><creatorcontrib>Brun, Anne Laure</creatorcontrib><creatorcontrib>Kokosi, Maria</creatorcontrib><creatorcontrib>Nair, Arjun</creatorcontrib><creatorcontrib>Walsh, Simon L.F.</creatorcontrib><creatorcontrib>Karwoski, Ronald</creatorcontrib><creatorcontrib>Nicholson, Andrew G.</creatorcontrib><creatorcontrib>Hansell, David M.</creatorcontrib><creatorcontrib>Wells, Athol U.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>British Nursing Index</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Respiratory medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Joseph</au><au>Bartholmai, Brian J.</au><au>Rajagopalan, Srinivasan</au><au>Egashira, Ryoko</au><au>Brun, Anne Laure</au><au>Kokosi, Maria</au><au>Nair, Arjun</au><au>Walsh, Simon L.F.</au><au>Karwoski, Ronald</au><au>Nicholson, Andrew G.</au><au>Hansell, David M.</au><au>Wells, Athol U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices</atitle><jtitle>Respiratory medicine</jtitle><addtitle>Respir Med</addtitle><date>2017-09</date><risdate>2017</risdate><volume>130</volume><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>0954-6111</issn><eissn>1532-3064</eissn><abstract>Unclassifiable-interstitial lung disease (uILD) represents a heterogeneous collection of pathologies encompassing those fibrosing lung diseases which do not fulfill current diagnostic criteria. We evaluated baseline and longitudinal functional and CT (visual and quantitative computer [CALIPER] analysis) variables to identify outcome predictors in uILD. Consecutive patients with uILD on multidisciplinary review (n = 95) had baseline functional (FVC, DLco, CPI [composite physiologic index]) and CT features (visual evaluation: CT pattern, fibrosis extent, honeycombing presence, traction bronchiectasis severity, pulmonary artery (PA) diameter; CALIPER evaluation: fibrosis extent, pulmonary vessel volume (PVV)) examined in univariate and multivariate Cox regression models. Change in functional and CT variables were examined in a patient subset (n = 37), to identify indicators of outcome. On univariate analysis, CPI was the most powerful functional predictor of mortality (p &lt; 0.0001). Visual traction bronchiectasis (p &lt; 0.0001), PA diameter (p &lt; 0.0001) and honeycombing presence (p = 0.0001) and CALIPER PVV (p = 0.0003) were the strongest CT outcome predictors. On multivariate analysis of baseline indices, traction bronchiectasis (p = 0.003), PA diameter (p = 0.003) and CPI (p = 0.0001) independently predicted mortality. Colinearity with functional indices precluded the evaluation of CALIPER PVV in multivariate models. On evaluation of longitudinal variables, increasing CALIPER fibrosis extent was the strongest outcome predictor, and remained so following adjustment for baseline disease severity, and when FVC declines were marginal. In uILD patients, CPI, traction bronchiectasis severity and PA diameter independently predicted outcome at baseline. Increasing fibrosis extent measured by CALIPER was the most powerful index of outcome regardless of baseline disease severity and strongly predicted outcome in patients with marginal FVC declines. •At baseline in uILD the composite physiologic index independently predicts survival.•PA diameter and traction bronchiectasis scores also independently predict mortality.•Change in CALIPER fibrosis scores independently predict survival in uILD.•Change in CALIPER fibrosis scores better predicts survival than baseline measures.•CALIPER fibrosis extent independently predicts outcome when FVC decline is marginal.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29206632</pmid><doi>10.1016/j.rmed.2017.07.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8054-2293</orcidid><orcidid>https://orcid.org/0000-0001-7834-6579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-6111
ispartof Respiratory medicine, 2017-09, Vol.130, p.43-51
issn 0954-6111
1532-3064
language eng
recordid cdi_proquest_miscellaneous_1973457393
source MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Aged
Automation
Bronchiectasis
Bronchiectasis - diagnostic imaging
Carbon monoxide
Carbon Monoxide - metabolism
Computed tomography
Connective Tissue Diseases - diagnostic imaging
Connective Tissue Diseases - mortality
Connective Tissue Diseases - physiopathology
Coronary vessels
Diagnostic systems
Emphysema
Evaluation
Female
Fibrosis
Forced Expiratory Volume - physiology
Humans
Idiopathic Pulmonary Fibrosis - diagnostic imaging
Idiopathic Pulmonary Fibrosis - mortality
Idiopathic Pulmonary Fibrosis - physiopathology
Longitudinal analysis
Lung - diagnostic imaging
Lung - pathology
Lung - physiopathology
Lung diseases
Lung Diseases, Interstitial - diagnostic imaging
Lung Diseases, Interstitial - mortality
Lung Diseases, Interstitial - physiopathology
Male
Medical imaging
Mortality
Multivariate Analysis
Outcome Assessment (Health Care)
Pathology
Patients
Pneumonia
Predictions
Predictive Value of Tests
Prognosis
Pulmonary arteries
Pulmonary artery
Pulmonary Artery - anatomy & histology
Pulmonary Artery - diagnostic imaging
Pulmonary fibrosis
Pulmonary hypertension
Quantitative CT
Regression analysis
Respiratory Function Tests - methods
Sarcoidosis
Severity of Illness Index
Tomography, X-Ray Computed - methods
Unclassifiable interstitial lung disease
Veins & arteries
Visual perception
Vital Capacity - physiology
title Unclassifiable-interstitial lung disease: Outcome prediction using CT and functional indices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unclassifiable-interstitial%20lung%20disease:%20Outcome%20prediction%20using%20CT%20and%20functional%20indices&rft.jtitle=Respiratory%20medicine&rft.au=Jacob,%20Joseph&rft.date=2017-09&rft.volume=130&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=0954-6111&rft.eissn=1532-3064&rft_id=info:doi/10.1016/j.rmed.2017.07.007&rft_dat=%3Cproquest_cross%3E1933580129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933580129&rft_id=info:pmid/29206632&rft_els_id=S0954611117302019&rfr_iscdi=true