Charge transport through a neural network of DNA nanocomposites
Interconnecting networks are fabricated by using calf-thymus DNA sodium salt and elementary DNA base adenine. Calf-thymus DNA sodium salt forms a complex wire-like network with poly(allylamine hydrochloride) which is a weak polyelectrolyte. The interconnection is formed by electrostatic forces durin...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2006-01, Vol.17 (1), p.227-231 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | Nanotechnology |
container_volume | 17 |
creator | Bandyopadhyay, A Ray, A K Sharma, A K Khondaker, S I |
description | Interconnecting networks are fabricated by using calf-thymus DNA sodium salt and elementary DNA base adenine. Calf-thymus DNA sodium salt forms a complex wire-like network with poly(allylamine hydrochloride) which is a weak polyelectrolyte. The interconnection is formed by electrostatic forces during self-assembly. Adenine base and zinc oxide (ZnO) form a neural network, the conformation of which depends on the molar ratio of the two ingredients. Electrical measurements show that the formation of a calf-thymus and polyallylamine hydrochloride suprastructure may lead to a selective charge transfer network while the adenine-based network offers additional processing capability. |
doi_str_mv | 10.1088/0957-4484/17/1/038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_19732963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19732963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-254bd317a313df1fdd0ad48ef93876ca2beb3686c88bddc7d74b6f32f8a3ac213</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQp_AGmTEgMIb62GzsTqspTqmCB2XL8aANpHGxHiH9PqqIuSDCd5btHugehc8BXgIUocDXjOWOCFcALKDAVB2gCtIS8nBFxiCZ7cIxOYnzDGEAQmKDrxVqFlc1SUF3sfUhZWgc_rNaZyjo7BNWOkT59eM-8y26e5lmnOq_9pvexSTaeoiOn2mjPfnKKXu9uXxYP-fL5_nExX-aaMZ5yMmO1ocAVBWocOGOwMkxYV1HBS61IbWtailILURujueGsLh0lTiiqNAE6RRe73j74j8HGJDdN1LZtVWf9ECWpYHyxYv9CqDglVUlHSHZQBx9jsE72odmo8CUBy-2ocruZ3G4mgUuQ46jj0eXuqPH93v92sjdutPlv-0f3N2xchN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19732963</pqid></control><display><type>article</type><title>Charge transport through a neural network of DNA nanocomposites</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bandyopadhyay, A ; Ray, A K ; Sharma, A K ; Khondaker, S I</creator><creatorcontrib>Bandyopadhyay, A ; Ray, A K ; Sharma, A K ; Khondaker, S I</creatorcontrib><description>Interconnecting networks are fabricated by using calf-thymus DNA sodium salt and elementary DNA base adenine. Calf-thymus DNA sodium salt forms a complex wire-like network with poly(allylamine hydrochloride) which is a weak polyelectrolyte. The interconnection is formed by electrostatic forces during self-assembly. Adenine base and zinc oxide (ZnO) form a neural network, the conformation of which depends on the molar ratio of the two ingredients. Electrical measurements show that the formation of a calf-thymus and polyallylamine hydrochloride suprastructure may lead to a selective charge transfer network while the adenine-based network offers additional processing capability.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/17/1/038</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Nanotechnology, 2006-01, Vol.17 (1), p.227-231</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-254bd317a313df1fdd0ad48ef93876ca2beb3686c88bddc7d74b6f32f8a3ac213</citedby><cites>FETCH-LOGICAL-c447t-254bd317a313df1fdd0ad48ef93876ca2beb3686c88bddc7d74b6f32f8a3ac213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/17/1/038/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53829,53909</link.rule.ids></links><search><creatorcontrib>Bandyopadhyay, A</creatorcontrib><creatorcontrib>Ray, A K</creatorcontrib><creatorcontrib>Sharma, A K</creatorcontrib><creatorcontrib>Khondaker, S I</creatorcontrib><title>Charge transport through a neural network of DNA nanocomposites</title><title>Nanotechnology</title><description>Interconnecting networks are fabricated by using calf-thymus DNA sodium salt and elementary DNA base adenine. Calf-thymus DNA sodium salt forms a complex wire-like network with poly(allylamine hydrochloride) which is a weak polyelectrolyte. The interconnection is formed by electrostatic forces during self-assembly. Adenine base and zinc oxide (ZnO) form a neural network, the conformation of which depends on the molar ratio of the two ingredients. Electrical measurements show that the formation of a calf-thymus and polyallylamine hydrochloride suprastructure may lead to a selective charge transfer network while the adenine-based network offers additional processing capability.</description><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgUQp_AGmTEgMIb62GzsTqspTqmCB2XL8aANpHGxHiH9PqqIuSDCd5btHugehc8BXgIUocDXjOWOCFcALKDAVB2gCtIS8nBFxiCZ7cIxOYnzDGEAQmKDrxVqFlc1SUF3sfUhZWgc_rNaZyjo7BNWOkT59eM-8y26e5lmnOq_9pvexSTaeoiOn2mjPfnKKXu9uXxYP-fL5_nExX-aaMZ5yMmO1ocAVBWocOGOwMkxYV1HBS61IbWtailILURujueGsLh0lTiiqNAE6RRe73j74j8HGJDdN1LZtVWf9ECWpYHyxYv9CqDglVUlHSHZQBx9jsE72odmo8CUBy-2ocruZ3G4mgUuQ46jj0eXuqPH93v92sjdutPlv-0f3N2xchN4</recordid><startdate>20060114</startdate><enddate>20060114</enddate><creator>Bandyopadhyay, A</creator><creator>Ray, A K</creator><creator>Sharma, A K</creator><creator>Khondaker, S I</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060114</creationdate><title>Charge transport through a neural network of DNA nanocomposites</title><author>Bandyopadhyay, A ; Ray, A K ; Sharma, A K ; Khondaker, S I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-254bd317a313df1fdd0ad48ef93876ca2beb3686c88bddc7d74b6f32f8a3ac213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, A</creatorcontrib><creatorcontrib>Ray, A K</creatorcontrib><creatorcontrib>Sharma, A K</creatorcontrib><creatorcontrib>Khondaker, S I</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, A</au><au>Ray, A K</au><au>Sharma, A K</au><au>Khondaker, S I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge transport through a neural network of DNA nanocomposites</atitle><jtitle>Nanotechnology</jtitle><date>2006-01-14</date><risdate>2006</risdate><volume>17</volume><issue>1</issue><spage>227</spage><epage>231</epage><pages>227-231</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Interconnecting networks are fabricated by using calf-thymus DNA sodium salt and elementary DNA base adenine. Calf-thymus DNA sodium salt forms a complex wire-like network with poly(allylamine hydrochloride) which is a weak polyelectrolyte. The interconnection is formed by electrostatic forces during self-assembly. Adenine base and zinc oxide (ZnO) form a neural network, the conformation of which depends on the molar ratio of the two ingredients. Electrical measurements show that the formation of a calf-thymus and polyallylamine hydrochloride suprastructure may lead to a selective charge transfer network while the adenine-based network offers additional processing capability.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-4484/17/1/038</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2006-01, Vol.17 (1), p.227-231 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_19732963 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Charge transport through a neural network of DNA nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20transport%20through%20a%20neural%20network%20of%20DNA%20nanocomposites&rft.jtitle=Nanotechnology&rft.au=Bandyopadhyay,%20A&rft.date=2006-01-14&rft.volume=17&rft.issue=1&rft.spage=227&rft.epage=231&rft.pages=227-231&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/17/1/038&rft_dat=%3Cproquest_iop_p%3E19732963%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19732963&rft_id=info:pmid/&rfr_iscdi=true |