Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review

Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cardiovascular medicine 2018-05, Vol.28 (4), p.233-242
Hauptverfasser: Trenor, Beatriz, Cardona, Karen, Romero, Lucia, Gomez, Juan F., Saiz, Javier, Rajamani, Sridharan, Belardinelli, Luiz, Giles, Wayne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 4
container_start_page 233
container_title Trends in cardiovascular medicine
container_volume 28
creator Trenor, Beatriz
Cardona, Karen
Romero, Lucia
Gomez, Juan F.
Saiz, Javier
Rajamani, Sridharan
Belardinelli, Luiz
Giles, Wayne
description Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.
doi_str_mv 10.1016/j.tcm.2017.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973026077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1050173817301664</els_id><sourcerecordid>2027424453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUVIiF_5gGyCIBuD6XaV-qFRsjLGjxCDA05WIQiNVGI09GMidXvw30fDOF5kkVXV4txL1WHsPUKJgO35upxsXwpAWSKWAOIVO8SFrArRYvM679BAgbJaHLCjlNYA0NYtvmUHQgmoKiUP2cO3OBYmxtXTtOqD5eQ92Snx0fNu3PJNZ1Jv-M-vZ794GPhq7s3AH2mYYrAdfeIXAw9dN6cpmokcj_QYaHvC3njTJXr3PI_Zj-ur75e3xd39zZfLi7vC1gqmwtWewJBsayN83SBYcmjEkoxphJENOPRqoVorXeOUd9LYdqmEBWerpVWuOman-95NHH_PlCbdh2Sp68xA45w0KlmBaEHKjH78B12PcxzydVqAkLWo66bKFO4pG8eUInm9iaE38Ukj6J1xvdbZuN4Z14g6G8-ZD8_N87In95L4qzgDn_cAZRVZT9TJBhrysyFm1dqN4T_1fwCkqZEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027424453</pqid></control><display><type>article</type><title>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Trenor, Beatriz ; Cardona, Karen ; Romero, Lucia ; Gomez, Juan F. ; Saiz, Javier ; Rajamani, Sridharan ; Belardinelli, Luiz ; Giles, Wayne</creator><creatorcontrib>Trenor, Beatriz ; Cardona, Karen ; Romero, Lucia ; Gomez, Juan F. ; Saiz, Javier ; Rajamani, Sridharan ; Belardinelli, Luiz ; Giles, Wayne</creatorcontrib><description>Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.</description><identifier>ISSN: 1050-1738</identifier><identifier>EISSN: 1873-2615</identifier><identifier>DOI: 10.1016/j.tcm.2017.11.002</identifier><identifier>PMID: 29203397</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action potential ; Action Potentials ; Animals ; Arrhythmias ; Arrhythmias, Cardiac - blood ; Arrhythmias, Cardiac - diagnosis ; Arrhythmias, Cardiac - etiology ; Arrhythmias, Cardiac - physiopathology ; Biomarkers - blood ; Clinical trials ; Dialysis ; Drug development ; Drug safety evaluations, (CiPA) ; Early after-depolarizations (EADs) ; Electrophysiology ; Fibroblasts ; Heart Rate ; Heart Ventricles - metabolism ; Heart Ventricles - physiopathology ; Humans ; Hypokalemia ; Hypokalemia - blood ; Hypokalemia - complications ; Hypokalemia - diagnosis ; Hypokalemia - physiopathology ; Inward rectification ; Ischemia ; K+ currents ; Kinetics ; Mathematical models ; Mathematical simulations ; Membrane potential ; Models, Cardiovascular ; Mortality ; Physiology ; Plasma ; Plasma K+, [K+]o ; Potassium ; Potassium - blood ; Potassium Channels - metabolism ; Potassium currents ; Principles ; Product safety ; Prognosis ; Renal failure ; Repolarization ; Risk Factors ; Ventricle</subject><ispartof>Trends in cardiovascular medicine, 2018-05, Vol.28 (4), p.233-242</ispartof><rights>2018</rights><rights>Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</citedby><cites>FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcm.2017.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29203397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trenor, Beatriz</creatorcontrib><creatorcontrib>Cardona, Karen</creatorcontrib><creatorcontrib>Romero, Lucia</creatorcontrib><creatorcontrib>Gomez, Juan F.</creatorcontrib><creatorcontrib>Saiz, Javier</creatorcontrib><creatorcontrib>Rajamani, Sridharan</creatorcontrib><creatorcontrib>Belardinelli, Luiz</creatorcontrib><creatorcontrib>Giles, Wayne</creatorcontrib><title>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</title><title>Trends in cardiovascular medicine</title><addtitle>Trends Cardiovasc Med</addtitle><description>Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Arrhythmias</subject><subject>Arrhythmias, Cardiac - blood</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Arrhythmias, Cardiac - etiology</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Biomarkers - blood</subject><subject>Clinical trials</subject><subject>Dialysis</subject><subject>Drug development</subject><subject>Drug safety evaluations, (CiPA)</subject><subject>Early after-depolarizations (EADs)</subject><subject>Electrophysiology</subject><subject>Fibroblasts</subject><subject>Heart Rate</subject><subject>Heart Ventricles - metabolism</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Hypokalemia</subject><subject>Hypokalemia - blood</subject><subject>Hypokalemia - complications</subject><subject>Hypokalemia - diagnosis</subject><subject>Hypokalemia - physiopathology</subject><subject>Inward rectification</subject><subject>Ischemia</subject><subject>K+ currents</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Mathematical simulations</subject><subject>Membrane potential</subject><subject>Models, Cardiovascular</subject><subject>Mortality</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Plasma K+, [K+]o</subject><subject>Potassium</subject><subject>Potassium - blood</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium currents</subject><subject>Principles</subject><subject>Product safety</subject><subject>Prognosis</subject><subject>Renal failure</subject><subject>Repolarization</subject><subject>Risk Factors</subject><subject>Ventricle</subject><issn>1050-1738</issn><issn>1873-2615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtqHDEQRUVIiF_5gGyCIBuD6XaV-qFRsjLGjxCDA05WIQiNVGI09GMidXvw30fDOF5kkVXV4txL1WHsPUKJgO35upxsXwpAWSKWAOIVO8SFrArRYvM679BAgbJaHLCjlNYA0NYtvmUHQgmoKiUP2cO3OBYmxtXTtOqD5eQ92Snx0fNu3PJNZ1Jv-M-vZ794GPhq7s3AH2mYYrAdfeIXAw9dN6cpmokcj_QYaHvC3njTJXr3PI_Zj-ur75e3xd39zZfLi7vC1gqmwtWewJBsayN83SBYcmjEkoxphJENOPRqoVorXeOUd9LYdqmEBWerpVWuOman-95NHH_PlCbdh2Sp68xA45w0KlmBaEHKjH78B12PcxzydVqAkLWo66bKFO4pG8eUInm9iaE38Ukj6J1xvdbZuN4Z14g6G8-ZD8_N87In95L4qzgDn_cAZRVZT9TJBhrysyFm1dqN4T_1fwCkqZEc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Trenor, Beatriz</creator><creator>Cardona, Karen</creator><creator>Romero, Lucia</creator><creator>Gomez, Juan F.</creator><creator>Saiz, Javier</creator><creator>Rajamani, Sridharan</creator><creator>Belardinelli, Luiz</creator><creator>Giles, Wayne</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</title><author>Trenor, Beatriz ; Cardona, Karen ; Romero, Lucia ; Gomez, Juan F. ; Saiz, Javier ; Rajamani, Sridharan ; Belardinelli, Luiz ; Giles, Wayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Arrhythmias</topic><topic>Arrhythmias, Cardiac - blood</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Arrhythmias, Cardiac - etiology</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Biomarkers - blood</topic><topic>Clinical trials</topic><topic>Dialysis</topic><topic>Drug development</topic><topic>Drug safety evaluations, (CiPA)</topic><topic>Early after-depolarizations (EADs)</topic><topic>Electrophysiology</topic><topic>Fibroblasts</topic><topic>Heart Rate</topic><topic>Heart Ventricles - metabolism</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Hypokalemia</topic><topic>Hypokalemia - blood</topic><topic>Hypokalemia - complications</topic><topic>Hypokalemia - diagnosis</topic><topic>Hypokalemia - physiopathology</topic><topic>Inward rectification</topic><topic>Ischemia</topic><topic>K+ currents</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Mathematical simulations</topic><topic>Membrane potential</topic><topic>Models, Cardiovascular</topic><topic>Mortality</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Plasma K+, [K+]o</topic><topic>Potassium</topic><topic>Potassium - blood</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium currents</topic><topic>Principles</topic><topic>Product safety</topic><topic>Prognosis</topic><topic>Renal failure</topic><topic>Repolarization</topic><topic>Risk Factors</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trenor, Beatriz</creatorcontrib><creatorcontrib>Cardona, Karen</creatorcontrib><creatorcontrib>Romero, Lucia</creatorcontrib><creatorcontrib>Gomez, Juan F.</creatorcontrib><creatorcontrib>Saiz, Javier</creatorcontrib><creatorcontrib>Rajamani, Sridharan</creatorcontrib><creatorcontrib>Belardinelli, Luiz</creatorcontrib><creatorcontrib>Giles, Wayne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trenor, Beatriz</au><au>Cardona, Karen</au><au>Romero, Lucia</au><au>Gomez, Juan F.</au><au>Saiz, Javier</au><au>Rajamani, Sridharan</au><au>Belardinelli, Luiz</au><au>Giles, Wayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</atitle><jtitle>Trends in cardiovascular medicine</jtitle><addtitle>Trends Cardiovasc Med</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>233</spage><epage>242</epage><pages>233-242</pages><issn>1050-1738</issn><eissn>1873-2615</eissn><abstract>Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29203397</pmid><doi>10.1016/j.tcm.2017.11.002</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-1738
ispartof Trends in cardiovascular medicine, 2018-05, Vol.28 (4), p.233-242
issn 1050-1738
1873-2615
language eng
recordid cdi_proquest_miscellaneous_1973026077
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Action potential
Action Potentials
Animals
Arrhythmias
Arrhythmias, Cardiac - blood
Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - etiology
Arrhythmias, Cardiac - physiopathology
Biomarkers - blood
Clinical trials
Dialysis
Drug development
Drug safety evaluations, (CiPA)
Early after-depolarizations (EADs)
Electrophysiology
Fibroblasts
Heart Rate
Heart Ventricles - metabolism
Heart Ventricles - physiopathology
Humans
Hypokalemia
Hypokalemia - blood
Hypokalemia - complications
Hypokalemia - diagnosis
Hypokalemia - physiopathology
Inward rectification
Ischemia
K+ currents
Kinetics
Mathematical models
Mathematical simulations
Membrane potential
Models, Cardiovascular
Mortality
Physiology
Plasma
Plasma K+, [K+]o
Potassium
Potassium - blood
Potassium Channels - metabolism
Potassium currents
Principles
Product safety
Prognosis
Renal failure
Repolarization
Risk Factors
Ventricle
title Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pro-arrhythmic%20effects%20of%20low%20plasma%20%5BK+%5D%20in%20human%20ventricle:%20An%20illustrated%20review&rft.jtitle=Trends%20in%20cardiovascular%20medicine&rft.au=Trenor,%20Beatriz&rft.date=2018-05-01&rft.volume=28&rft.issue=4&rft.spage=233&rft.epage=242&rft.pages=233-242&rft.issn=1050-1738&rft.eissn=1873-2615&rft_id=info:doi/10.1016/j.tcm.2017.11.002&rft_dat=%3Cproquest_cross%3E2027424453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027424453&rft_id=info:pmid/29203397&rft_els_id=S1050173817301664&rfr_iscdi=true