Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review
Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has...
Gespeichert in:
Veröffentlicht in: | Trends in cardiovascular medicine 2018-05, Vol.28 (4), p.233-242 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 4 |
container_start_page | 233 |
container_title | Trends in cardiovascular medicine |
container_volume | 28 |
creator | Trenor, Beatriz Cardona, Karen Romero, Lucia Gomez, Juan F. Saiz, Javier Rajamani, Sridharan Belardinelli, Luiz Giles, Wayne |
description | Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential.
Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates. |
doi_str_mv | 10.1016/j.tcm.2017.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973026077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1050173817301664</els_id><sourcerecordid>2027424453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUVIiF_5gGyCIBuD6XaV-qFRsjLGjxCDA05WIQiNVGI09GMidXvw30fDOF5kkVXV4txL1WHsPUKJgO35upxsXwpAWSKWAOIVO8SFrArRYvM679BAgbJaHLCjlNYA0NYtvmUHQgmoKiUP2cO3OBYmxtXTtOqD5eQ92Snx0fNu3PJNZ1Jv-M-vZ794GPhq7s3AH2mYYrAdfeIXAw9dN6cpmokcj_QYaHvC3njTJXr3PI_Zj-ur75e3xd39zZfLi7vC1gqmwtWewJBsayN83SBYcmjEkoxphJENOPRqoVorXeOUd9LYdqmEBWerpVWuOman-95NHH_PlCbdh2Sp68xA45w0KlmBaEHKjH78B12PcxzydVqAkLWo66bKFO4pG8eUInm9iaE38Ukj6J1xvdbZuN4Z14g6G8-ZD8_N87In95L4qzgDn_cAZRVZT9TJBhrysyFm1dqN4T_1fwCkqZEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027424453</pqid></control><display><type>article</type><title>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Trenor, Beatriz ; Cardona, Karen ; Romero, Lucia ; Gomez, Juan F. ; Saiz, Javier ; Rajamani, Sridharan ; Belardinelli, Luiz ; Giles, Wayne</creator><creatorcontrib>Trenor, Beatriz ; Cardona, Karen ; Romero, Lucia ; Gomez, Juan F. ; Saiz, Javier ; Rajamani, Sridharan ; Belardinelli, Luiz ; Giles, Wayne</creatorcontrib><description>Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential.
Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.</description><identifier>ISSN: 1050-1738</identifier><identifier>EISSN: 1873-2615</identifier><identifier>DOI: 10.1016/j.tcm.2017.11.002</identifier><identifier>PMID: 29203397</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action potential ; Action Potentials ; Animals ; Arrhythmias ; Arrhythmias, Cardiac - blood ; Arrhythmias, Cardiac - diagnosis ; Arrhythmias, Cardiac - etiology ; Arrhythmias, Cardiac - physiopathology ; Biomarkers - blood ; Clinical trials ; Dialysis ; Drug development ; Drug safety evaluations, (CiPA) ; Early after-depolarizations (EADs) ; Electrophysiology ; Fibroblasts ; Heart Rate ; Heart Ventricles - metabolism ; Heart Ventricles - physiopathology ; Humans ; Hypokalemia ; Hypokalemia - blood ; Hypokalemia - complications ; Hypokalemia - diagnosis ; Hypokalemia - physiopathology ; Inward rectification ; Ischemia ; K+ currents ; Kinetics ; Mathematical models ; Mathematical simulations ; Membrane potential ; Models, Cardiovascular ; Mortality ; Physiology ; Plasma ; Plasma K+, [K+]o ; Potassium ; Potassium - blood ; Potassium Channels - metabolism ; Potassium currents ; Principles ; Product safety ; Prognosis ; Renal failure ; Repolarization ; Risk Factors ; Ventricle</subject><ispartof>Trends in cardiovascular medicine, 2018-05, Vol.28 (4), p.233-242</ispartof><rights>2018</rights><rights>Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</citedby><cites>FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcm.2017.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29203397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trenor, Beatriz</creatorcontrib><creatorcontrib>Cardona, Karen</creatorcontrib><creatorcontrib>Romero, Lucia</creatorcontrib><creatorcontrib>Gomez, Juan F.</creatorcontrib><creatorcontrib>Saiz, Javier</creatorcontrib><creatorcontrib>Rajamani, Sridharan</creatorcontrib><creatorcontrib>Belardinelli, Luiz</creatorcontrib><creatorcontrib>Giles, Wayne</creatorcontrib><title>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</title><title>Trends in cardiovascular medicine</title><addtitle>Trends Cardiovasc Med</addtitle><description>Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential.
Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Arrhythmias</subject><subject>Arrhythmias, Cardiac - blood</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Arrhythmias, Cardiac - etiology</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Biomarkers - blood</subject><subject>Clinical trials</subject><subject>Dialysis</subject><subject>Drug development</subject><subject>Drug safety evaluations, (CiPA)</subject><subject>Early after-depolarizations (EADs)</subject><subject>Electrophysiology</subject><subject>Fibroblasts</subject><subject>Heart Rate</subject><subject>Heart Ventricles - metabolism</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Hypokalemia</subject><subject>Hypokalemia - blood</subject><subject>Hypokalemia - complications</subject><subject>Hypokalemia - diagnosis</subject><subject>Hypokalemia - physiopathology</subject><subject>Inward rectification</subject><subject>Ischemia</subject><subject>K+ currents</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Mathematical simulations</subject><subject>Membrane potential</subject><subject>Models, Cardiovascular</subject><subject>Mortality</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Plasma K+, [K+]o</subject><subject>Potassium</subject><subject>Potassium - blood</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium currents</subject><subject>Principles</subject><subject>Product safety</subject><subject>Prognosis</subject><subject>Renal failure</subject><subject>Repolarization</subject><subject>Risk Factors</subject><subject>Ventricle</subject><issn>1050-1738</issn><issn>1873-2615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtqHDEQRUVIiF_5gGyCIBuD6XaV-qFRsjLGjxCDA05WIQiNVGI09GMidXvw30fDOF5kkVXV4txL1WHsPUKJgO35upxsXwpAWSKWAOIVO8SFrArRYvM679BAgbJaHLCjlNYA0NYtvmUHQgmoKiUP2cO3OBYmxtXTtOqD5eQ92Snx0fNu3PJNZ1Jv-M-vZ794GPhq7s3AH2mYYrAdfeIXAw9dN6cpmokcj_QYaHvC3njTJXr3PI_Zj-ur75e3xd39zZfLi7vC1gqmwtWewJBsayN83SBYcmjEkoxphJENOPRqoVorXeOUd9LYdqmEBWerpVWuOman-95NHH_PlCbdh2Sp68xA45w0KlmBaEHKjH78B12PcxzydVqAkLWo66bKFO4pG8eUInm9iaE38Ukj6J1xvdbZuN4Z14g6G8-ZD8_N87In95L4qzgDn_cAZRVZT9TJBhrysyFm1dqN4T_1fwCkqZEc</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Trenor, Beatriz</creator><creator>Cardona, Karen</creator><creator>Romero, Lucia</creator><creator>Gomez, Juan F.</creator><creator>Saiz, Javier</creator><creator>Rajamani, Sridharan</creator><creator>Belardinelli, Luiz</creator><creator>Giles, Wayne</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</title><author>Trenor, Beatriz ; Cardona, Karen ; Romero, Lucia ; Gomez, Juan F. ; Saiz, Javier ; Rajamani, Sridharan ; Belardinelli, Luiz ; Giles, Wayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-d4fe0ae764a2f4510ced1a2beaa52a750d1f9896c7d5d9fd7ac6b92c0dc3bc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Arrhythmias</topic><topic>Arrhythmias, Cardiac - blood</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Arrhythmias, Cardiac - etiology</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Biomarkers - blood</topic><topic>Clinical trials</topic><topic>Dialysis</topic><topic>Drug development</topic><topic>Drug safety evaluations, (CiPA)</topic><topic>Early after-depolarizations (EADs)</topic><topic>Electrophysiology</topic><topic>Fibroblasts</topic><topic>Heart Rate</topic><topic>Heart Ventricles - metabolism</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Hypokalemia</topic><topic>Hypokalemia - blood</topic><topic>Hypokalemia - complications</topic><topic>Hypokalemia - diagnosis</topic><topic>Hypokalemia - physiopathology</topic><topic>Inward rectification</topic><topic>Ischemia</topic><topic>K+ currents</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Mathematical simulations</topic><topic>Membrane potential</topic><topic>Models, Cardiovascular</topic><topic>Mortality</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Plasma K+, [K+]o</topic><topic>Potassium</topic><topic>Potassium - blood</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium currents</topic><topic>Principles</topic><topic>Product safety</topic><topic>Prognosis</topic><topic>Renal failure</topic><topic>Repolarization</topic><topic>Risk Factors</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trenor, Beatriz</creatorcontrib><creatorcontrib>Cardona, Karen</creatorcontrib><creatorcontrib>Romero, Lucia</creatorcontrib><creatorcontrib>Gomez, Juan F.</creatorcontrib><creatorcontrib>Saiz, Javier</creatorcontrib><creatorcontrib>Rajamani, Sridharan</creatorcontrib><creatorcontrib>Belardinelli, Luiz</creatorcontrib><creatorcontrib>Giles, Wayne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in cardiovascular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trenor, Beatriz</au><au>Cardona, Karen</au><au>Romero, Lucia</au><au>Gomez, Juan F.</au><au>Saiz, Javier</au><au>Rajamani, Sridharan</au><au>Belardinelli, Luiz</au><au>Giles, Wayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review</atitle><jtitle>Trends in cardiovascular medicine</jtitle><addtitle>Trends Cardiovasc Med</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>233</spage><epage>242</epage><pages>233-242</pages><issn>1050-1738</issn><eissn>1873-2615</eissn><abstract>Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential.
Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29203397</pmid><doi>10.1016/j.tcm.2017.11.002</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-1738 |
ispartof | Trends in cardiovascular medicine, 2018-05, Vol.28 (4), p.233-242 |
issn | 1050-1738 1873-2615 |
language | eng |
recordid | cdi_proquest_miscellaneous_1973026077 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Action potential Action Potentials Animals Arrhythmias Arrhythmias, Cardiac - blood Arrhythmias, Cardiac - diagnosis Arrhythmias, Cardiac - etiology Arrhythmias, Cardiac - physiopathology Biomarkers - blood Clinical trials Dialysis Drug development Drug safety evaluations, (CiPA) Early after-depolarizations (EADs) Electrophysiology Fibroblasts Heart Rate Heart Ventricles - metabolism Heart Ventricles - physiopathology Humans Hypokalemia Hypokalemia - blood Hypokalemia - complications Hypokalemia - diagnosis Hypokalemia - physiopathology Inward rectification Ischemia K+ currents Kinetics Mathematical models Mathematical simulations Membrane potential Models, Cardiovascular Mortality Physiology Plasma Plasma K+, [K+]o Potassium Potassium - blood Potassium Channels - metabolism Potassium currents Principles Product safety Prognosis Renal failure Repolarization Risk Factors Ventricle |
title | Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pro-arrhythmic%20effects%20of%20low%20plasma%20%5BK+%5D%20in%20human%20ventricle:%20An%20illustrated%20review&rft.jtitle=Trends%20in%20cardiovascular%20medicine&rft.au=Trenor,%20Beatriz&rft.date=2018-05-01&rft.volume=28&rft.issue=4&rft.spage=233&rft.epage=242&rft.pages=233-242&rft.issn=1050-1738&rft.eissn=1873-2615&rft_id=info:doi/10.1016/j.tcm.2017.11.002&rft_dat=%3Cproquest_cross%3E2027424453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027424453&rft_id=info:pmid/29203397&rft_els_id=S1050173817301664&rfr_iscdi=true |