Bismuth-Induced Inactivation of Ferric Uptake Regulator from Helicobacter pylori

Ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for bacterial colonization and survival within the gastric mucosa. H. pylori Fur (HpFur) is unique in its ability to regulate gene expression in both metal-bound (holo-Fur) and metal-free (apo-Fur) forms. Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2017-12, Vol.56 (24), p.15041-15048
Hauptverfasser: He, Xiaojun, Liao, Xiangwen, Li, Hongyan, Xia, Wei, Sun, Hongzhe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for bacterial colonization and survival within the gastric mucosa. H. pylori Fur (HpFur) is unique in its ability to regulate gene expression in both metal-bound (holo-Fur) and metal-free (apo-Fur) forms. Bismuth-based drugs are widely used for the treatment of H. pylori infection. However, the mechanism of action of bismuth drug was not fully understood. Recently, it has been reported that bismuth drugs could interfere with the bacterial ferric uptake pathway and inhibit bacterial growth, implying intrinsic correlation between bismuth drug and bacterial iron metabolism. Herein, we demonstrate that Bi­(III) binds to HpFur protein specifically at the physiologically important S1 site, which further leads to protein oligomerization and loss of DNA binding capability. The targeting of HpFur by bismuth drugs significantly reduced transcription levels of its regulated genes, which are crucial for bacterial physiology and metabolism. Our studies present direct evidence that perturbation of iron metabolism in H. pylori by bismuth might serve as one of the mechanisms for the antimicrobial activity of bismuth drugs.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.7b02380