Topological order and thermal equilibrium in polariton condensates

The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2018-02, Vol.17 (2), p.145-151
Hauptverfasser: Caputo, Davide, Ballarini, Dario, Dagvadorj, Galbadrakh, Sánchez Muñoz, Carlos, De Giorgi, Milena, Dominici, Lorenzo, West, Kenneth, Pfeiffer, Loren N., Gigli, Giuseppe, Laussy, Fabrice P., Szymańska, Marzena H., Sanvitto, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 2
container_start_page 145
container_title Nature materials
container_volume 17
creator Caputo, Davide
Ballarini, Dario
Dagvadorj, Galbadrakh
Sánchez Muñoz, Carlos
De Giorgi, Milena
Dominici, Lorenzo
West, Kenneth
Pfeiffer, Loren N.
Gigli, Giuseppe
Laussy, Fabrice P.
Szymańska, Marzena H.
Sanvitto, Daniele
description The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light–matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven–dissipative phase transitions and enable the investigation of topological ordering in open systems. The Berezinskii–Kosterlitz–Thouless transition is observed in a 2D gas of exciton-polaritons, through measurements of the first-order coherence both in space and time.
doi_str_mv 10.1038/nmat5039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1972303027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972303027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-96095e07a1f134021548d9dc38d7fa9fc1fa8e70dbd4edf2b378c54a25e5d9bd3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRbK2Cn0ACXvQQ3dlNNtmjFv9BwUs9h012Urcku-1ucvDbm9LWgoKnGWZ-vPd4hFwCvQPK83vbqi6lXB6RMSSZiBMh6PFuB2BsRM5CWFLKIE3FKRkxySgFKcbkce5WrnELU6kmcl6jj5TVUfeJvh0uuO5NY0pv-jYyNhpQ5U3nbFQ5q9EG1WE4Jye1agJe7OaEfDw_zaev8ez95W36MIurhMsuloLKFGmmoAaebKIkuZa64rnOaiXrCmqVY0Z1qRPUNSt5lldpoliKqZal5hNys9VdebfuMXRFa0KFTaMsuj4UIDPGKacsG9DrX-jS9d4O6QrGIZWCg0j-pShjAMB5drCtvAvBY12svGmV_yqAFpv2i337A3q1E-zLFvUPuK97AG63QBhedoH-4PhH7Bs114y7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022111337</pqid></control><display><type>article</type><title>Topological order and thermal equilibrium in polariton condensates</title><source>Nature</source><source>SpringerLink</source><creator>Caputo, Davide ; Ballarini, Dario ; Dagvadorj, Galbadrakh ; Sánchez Muñoz, Carlos ; De Giorgi, Milena ; Dominici, Lorenzo ; West, Kenneth ; Pfeiffer, Loren N. ; Gigli, Giuseppe ; Laussy, Fabrice P. ; Szymańska, Marzena H. ; Sanvitto, Daniele</creator><creatorcontrib>Caputo, Davide ; Ballarini, Dario ; Dagvadorj, Galbadrakh ; Sánchez Muñoz, Carlos ; De Giorgi, Milena ; Dominici, Lorenzo ; West, Kenneth ; Pfeiffer, Loren N. ; Gigli, Giuseppe ; Laussy, Fabrice P. ; Szymańska, Marzena H. ; Sanvitto, Daniele</creatorcontrib><description>The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light–matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven–dissipative phase transitions and enable the investigation of topological ordering in open systems. The Berezinskii–Kosterlitz–Thouless transition is observed in a 2D gas of exciton-polaritons, through measurements of the first-order coherence both in space and time.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat5039</identifier><identifier>PMID: 29200196</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 639/301/119/2795 ; 639/624/400/2797 ; 639/766/119/999 ; Algebra ; Biomaterials ; Coherence ; Condensed Matter Physics ; Defects ; Domains ; Excitons ; Helium ; Liquid helium ; Materials Science ; Microcavities ; Nanotechnology ; Open systems ; Optical and Electronic Materials ; Phase transitions ; Polaritons ; Superconductivity ; Thin films ; Topology</subject><ispartof>Nature materials, 2018-02, Vol.17 (2), p.145-151</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-96095e07a1f134021548d9dc38d7fa9fc1fa8e70dbd4edf2b378c54a25e5d9bd3</citedby><cites>FETCH-LOGICAL-c439t-96095e07a1f134021548d9dc38d7fa9fc1fa8e70dbd4edf2b378c54a25e5d9bd3</cites><orcidid>0000-0002-1070-7128 ; 0000-0002-3831-8829 ; 0000-0002-5860-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat5039$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat5039$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29200196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caputo, Davide</creatorcontrib><creatorcontrib>Ballarini, Dario</creatorcontrib><creatorcontrib>Dagvadorj, Galbadrakh</creatorcontrib><creatorcontrib>Sánchez Muñoz, Carlos</creatorcontrib><creatorcontrib>De Giorgi, Milena</creatorcontrib><creatorcontrib>Dominici, Lorenzo</creatorcontrib><creatorcontrib>West, Kenneth</creatorcontrib><creatorcontrib>Pfeiffer, Loren N.</creatorcontrib><creatorcontrib>Gigli, Giuseppe</creatorcontrib><creatorcontrib>Laussy, Fabrice P.</creatorcontrib><creatorcontrib>Szymańska, Marzena H.</creatorcontrib><creatorcontrib>Sanvitto, Daniele</creatorcontrib><title>Topological order and thermal equilibrium in polariton condensates</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light–matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven–dissipative phase transitions and enable the investigation of topological ordering in open systems. The Berezinskii–Kosterlitz–Thouless transition is observed in a 2D gas of exciton-polaritons, through measurements of the first-order coherence both in space and time.</description><subject>132/124</subject><subject>639/301/119/2795</subject><subject>639/624/400/2797</subject><subject>639/766/119/999</subject><subject>Algebra</subject><subject>Biomaterials</subject><subject>Coherence</subject><subject>Condensed Matter Physics</subject><subject>Defects</subject><subject>Domains</subject><subject>Excitons</subject><subject>Helium</subject><subject>Liquid helium</subject><subject>Materials Science</subject><subject>Microcavities</subject><subject>Nanotechnology</subject><subject>Open systems</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Polaritons</subject><subject>Superconductivity</subject><subject>Thin films</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9Lw0AQxRdRbK2Cn0ACXvQQ3dlNNtmjFv9BwUs9h012Urcku-1ucvDbm9LWgoKnGWZ-vPd4hFwCvQPK83vbqi6lXB6RMSSZiBMh6PFuB2BsRM5CWFLKIE3FKRkxySgFKcbkce5WrnELU6kmcl6jj5TVUfeJvh0uuO5NY0pv-jYyNhpQ5U3nbFQ5q9EG1WE4Jye1agJe7OaEfDw_zaev8ez95W36MIurhMsuloLKFGmmoAaebKIkuZa64rnOaiXrCmqVY0Z1qRPUNSt5lldpoliKqZal5hNys9VdebfuMXRFa0KFTaMsuj4UIDPGKacsG9DrX-jS9d4O6QrGIZWCg0j-pShjAMB5drCtvAvBY12svGmV_yqAFpv2i337A3q1E-zLFvUPuK97AG63QBhedoH-4PhH7Bs114y7</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Caputo, Davide</creator><creator>Ballarini, Dario</creator><creator>Dagvadorj, Galbadrakh</creator><creator>Sánchez Muñoz, Carlos</creator><creator>De Giorgi, Milena</creator><creator>Dominici, Lorenzo</creator><creator>West, Kenneth</creator><creator>Pfeiffer, Loren N.</creator><creator>Gigli, Giuseppe</creator><creator>Laussy, Fabrice P.</creator><creator>Szymańska, Marzena H.</creator><creator>Sanvitto, Daniele</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1070-7128</orcidid><orcidid>https://orcid.org/0000-0002-3831-8829</orcidid><orcidid>https://orcid.org/0000-0002-5860-7089</orcidid></search><sort><creationdate>20180201</creationdate><title>Topological order and thermal equilibrium in polariton condensates</title><author>Caputo, Davide ; Ballarini, Dario ; Dagvadorj, Galbadrakh ; Sánchez Muñoz, Carlos ; De Giorgi, Milena ; Dominici, Lorenzo ; West, Kenneth ; Pfeiffer, Loren N. ; Gigli, Giuseppe ; Laussy, Fabrice P. ; Szymańska, Marzena H. ; Sanvitto, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-96095e07a1f134021548d9dc38d7fa9fc1fa8e70dbd4edf2b378c54a25e5d9bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>132/124</topic><topic>639/301/119/2795</topic><topic>639/624/400/2797</topic><topic>639/766/119/999</topic><topic>Algebra</topic><topic>Biomaterials</topic><topic>Coherence</topic><topic>Condensed Matter Physics</topic><topic>Defects</topic><topic>Domains</topic><topic>Excitons</topic><topic>Helium</topic><topic>Liquid helium</topic><topic>Materials Science</topic><topic>Microcavities</topic><topic>Nanotechnology</topic><topic>Open systems</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Polaritons</topic><topic>Superconductivity</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caputo, Davide</creatorcontrib><creatorcontrib>Ballarini, Dario</creatorcontrib><creatorcontrib>Dagvadorj, Galbadrakh</creatorcontrib><creatorcontrib>Sánchez Muñoz, Carlos</creatorcontrib><creatorcontrib>De Giorgi, Milena</creatorcontrib><creatorcontrib>Dominici, Lorenzo</creatorcontrib><creatorcontrib>West, Kenneth</creatorcontrib><creatorcontrib>Pfeiffer, Loren N.</creatorcontrib><creatorcontrib>Gigli, Giuseppe</creatorcontrib><creatorcontrib>Laussy, Fabrice P.</creatorcontrib><creatorcontrib>Szymańska, Marzena H.</creatorcontrib><creatorcontrib>Sanvitto, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caputo, Davide</au><au>Ballarini, Dario</au><au>Dagvadorj, Galbadrakh</au><au>Sánchez Muñoz, Carlos</au><au>De Giorgi, Milena</au><au>Dominici, Lorenzo</au><au>West, Kenneth</au><au>Pfeiffer, Loren N.</au><au>Gigli, Giuseppe</au><au>Laussy, Fabrice P.</au><au>Szymańska, Marzena H.</au><au>Sanvitto, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological order and thermal equilibrium in polariton condensates</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>17</volume><issue>2</issue><spage>145</spage><epage>151</epage><pages>145-151</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light–matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven–dissipative phase transitions and enable the investigation of topological ordering in open systems. The Berezinskii–Kosterlitz–Thouless transition is observed in a 2D gas of exciton-polaritons, through measurements of the first-order coherence both in space and time.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29200196</pmid><doi>10.1038/nmat5039</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1070-7128</orcidid><orcidid>https://orcid.org/0000-0002-3831-8829</orcidid><orcidid>https://orcid.org/0000-0002-5860-7089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2018-02, Vol.17 (2), p.145-151
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1972303027
source Nature; SpringerLink
subjects 132/124
639/301/119/2795
639/624/400/2797
639/766/119/999
Algebra
Biomaterials
Coherence
Condensed Matter Physics
Defects
Domains
Excitons
Helium
Liquid helium
Materials Science
Microcavities
Nanotechnology
Open systems
Optical and Electronic Materials
Phase transitions
Polaritons
Superconductivity
Thin films
Topology
title Topological order and thermal equilibrium in polariton condensates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20order%20and%20thermal%20equilibrium%20in%20polariton%20condensates&rft.jtitle=Nature%20materials&rft.au=Caputo,%20Davide&rft.date=2018-02-01&rft.volume=17&rft.issue=2&rft.spage=145&rft.epage=151&rft.pages=145-151&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat5039&rft_dat=%3Cproquest_cross%3E1972303027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022111337&rft_id=info:pmid/29200196&rfr_iscdi=true