Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation

Although humic acids (HA) are involved in many biological processes in soils and thus their ecological importance has received much attention, the degradative pathways and corresponding catalytic genes underlying the HA degradation by bacteria remain unclear. To unveil those uncertainties, we analyz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Folia microbiologica 2018-05, Vol.63 (3), p.315-323
Hauptverfasser: Kim, Dockyu, Park, Ha Ju, Sul, Woo Jun, Park, Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 3
container_start_page 315
container_title Folia microbiologica
container_volume 63
creator Kim, Dockyu
Park, Ha Ju
Sul, Woo Jun
Park, Hyun
description Although humic acids (HA) are involved in many biological processes in soils and thus their ecological importance has received much attention, the degradative pathways and corresponding catalytic genes underlying the HA degradation by bacteria remain unclear. To unveil those uncertainties, we analyzed transcriptomes extracted from Pseudomonas sp. PAMC 26793 cells time-dependently induced in the presence of HA in a lab flask. Out of 6288 genes, 299 (microarray) and 585 (RNA-seq) were up-regulated by > 2.0-fold in HA-induced cells, compared with controls. A significant portion (9.7% in microarray and 24.1% in RNA-seq) of these genes are predicted to function in the transport and metabolism of small molecule compounds, which could result from microbial HA degradation. To further identify lignin (a surrogate for HA)-degradative genes, 6288 protein sequences were analyzed against carbohydrate-active enzyme database and a self-curated list of putative lignin degradative genes. Out of 19 genes predicted to function in lignin degradation, several genes encoding laccase, dye-decolorizing peroxidase, vanillate O -demethylase oxygenase and reductase, and biphenyl 2,3-dioxygenase were up-regulated > 2.0-fold in RNA-seq. This induction was further confirmed by qRT-PCR, validating the likely involvement of these genes in the degradation of HA.
doi_str_mv 10.1007/s12223-017-0573-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1971669125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1971669125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c6565bc2f7a479dbe2c262c8bc336cdb85e9eba0df125a98e72d0230687c69b03</originalsourceid><addsrcrecordid>eNp1kc1u1TAQRi1ERS8tD8AGWWLDJmVsx3bMDlX8SZXool1bju3cpkri4EmK7hvw2PiSghASK1vy-T6P5hDyksEFA9BvkXHORQVMVyB1uTwhO9boujJCqqdkB8BkJZXgp-Q54j2AglrwZ-SUG2aUkbAjP26ym9Dnfl7SGKmb3HDAHmnq6DXGNaQxTQ4pzhe0y2mkuLYu-6X3dFmnkB3F1A_v6OyWu-_uQEPcuvo0la5A93GKNPTo00PMB9qlTO_WsaSd7wMWfJ9dcEf8nJx0bsD44vE8I7cfP9xcfq6uvn76cvn-qvK1aJbKK6lk63mnXa1NaCP3XHHftF4I5UPbyGhi6yB0jEtnmqh5AC5ANdor04I4I2-23jmnb2vExY5lvDgMboppRcuMZkqZki7o63_Q-7TmsqFfFJRFN7UoFNsonxNijp2dcz-6fLAM7FGT3TTZoskeNdnjEK8em9d2jOFP4reXAvANwPI07WP-6-v_tv4EsiKftQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970874843</pqid></control><display><type>article</type><title>Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Dockyu ; Park, Ha Ju ; Sul, Woo Jun ; Park, Hyun</creator><creatorcontrib>Kim, Dockyu ; Park, Ha Ju ; Sul, Woo Jun ; Park, Hyun</creatorcontrib><description>Although humic acids (HA) are involved in many biological processes in soils and thus their ecological importance has received much attention, the degradative pathways and corresponding catalytic genes underlying the HA degradation by bacteria remain unclear. To unveil those uncertainties, we analyzed transcriptomes extracted from Pseudomonas sp. PAMC 26793 cells time-dependently induced in the presence of HA in a lab flask. Out of 6288 genes, 299 (microarray) and 585 (RNA-seq) were up-regulated by &gt; 2.0-fold in HA-induced cells, compared with controls. A significant portion (9.7% in microarray and 24.1% in RNA-seq) of these genes are predicted to function in the transport and metabolism of small molecule compounds, which could result from microbial HA degradation. To further identify lignin (a surrogate for HA)-degradative genes, 6288 protein sequences were analyzed against carbohydrate-active enzyme database and a self-curated list of putative lignin degradative genes. Out of 19 genes predicted to function in lignin degradation, several genes encoding laccase, dye-decolorizing peroxidase, vanillate O -demethylase oxygenase and reductase, and biphenyl 2,3-dioxygenase were up-regulated &gt; 2.0-fold in RNA-seq. This induction was further confirmed by qRT-PCR, validating the likely involvement of these genes in the degradation of HA.</description><identifier>ISSN: 0015-5632</identifier><identifier>EISSN: 1874-9356</identifier><identifier>DOI: 10.1007/s12223-017-0573-0</identifier><identifier>PMID: 29196950</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acids ; Applied Microbiology ; Bacteria ; Biodegradation ; Biological activity ; Biomedical and Life Sciences ; Biphenyl ; Biphenyl 2,3-dioxygenase ; Carbohydrates ; Catalysis ; Decoloring ; Degradation ; DNA microarrays ; Environmental Engineering/Biotechnology ; Gene expression ; Gene sequencing ; Genes ; Humic acids ; Immunology ; Laccase ; Life Sciences ; Lignin ; Metabolism ; Microbiology ; Microorganisms ; Original Article ; Oxygenase ; Peroxidase ; Pseudomonas ; Reductase ; Ribonucleic acid ; RNA ; Soils ; Taiga &amp; tundra ; Tundra ; Uncertainty analysis ; Vanillate O-demethylase</subject><ispartof>Folia microbiologica, 2018-05, Vol.63 (3), p.315-323</ispartof><rights>Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2017</rights><rights>Folia Microbiologica is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c6565bc2f7a479dbe2c262c8bc336cdb85e9eba0df125a98e72d0230687c69b03</citedby><cites>FETCH-LOGICAL-c438t-c6565bc2f7a479dbe2c262c8bc336cdb85e9eba0df125a98e72d0230687c69b03</cites><orcidid>0000-0001-7504-6247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12223-017-0573-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12223-017-0573-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29196950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dockyu</creatorcontrib><creatorcontrib>Park, Ha Ju</creatorcontrib><creatorcontrib>Sul, Woo Jun</creatorcontrib><creatorcontrib>Park, Hyun</creatorcontrib><title>Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation</title><title>Folia microbiologica</title><addtitle>Folia Microbiol</addtitle><addtitle>Folia Microbiol (Praha)</addtitle><description>Although humic acids (HA) are involved in many biological processes in soils and thus their ecological importance has received much attention, the degradative pathways and corresponding catalytic genes underlying the HA degradation by bacteria remain unclear. To unveil those uncertainties, we analyzed transcriptomes extracted from Pseudomonas sp. PAMC 26793 cells time-dependently induced in the presence of HA in a lab flask. Out of 6288 genes, 299 (microarray) and 585 (RNA-seq) were up-regulated by &gt; 2.0-fold in HA-induced cells, compared with controls. A significant portion (9.7% in microarray and 24.1% in RNA-seq) of these genes are predicted to function in the transport and metabolism of small molecule compounds, which could result from microbial HA degradation. To further identify lignin (a surrogate for HA)-degradative genes, 6288 protein sequences were analyzed against carbohydrate-active enzyme database and a self-curated list of putative lignin degradative genes. Out of 19 genes predicted to function in lignin degradation, several genes encoding laccase, dye-decolorizing peroxidase, vanillate O -demethylase oxygenase and reductase, and biphenyl 2,3-dioxygenase were up-regulated &gt; 2.0-fold in RNA-seq. This induction was further confirmed by qRT-PCR, validating the likely involvement of these genes in the degradation of HA.</description><subject>Acids</subject><subject>Applied Microbiology</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biphenyl</subject><subject>Biphenyl 2,3-dioxygenase</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Decoloring</subject><subject>Degradation</subject><subject>DNA microarrays</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Humic acids</subject><subject>Immunology</subject><subject>Laccase</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Original Article</subject><subject>Oxygenase</subject><subject>Peroxidase</subject><subject>Pseudomonas</subject><subject>Reductase</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Soils</subject><subject>Taiga &amp; tundra</subject><subject>Tundra</subject><subject>Uncertainty analysis</subject><subject>Vanillate O-demethylase</subject><issn>0015-5632</issn><issn>1874-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQRi1ERS8tD8AGWWLDJmVsx3bMDlX8SZXool1bju3cpkri4EmK7hvw2PiSghASK1vy-T6P5hDyksEFA9BvkXHORQVMVyB1uTwhO9boujJCqqdkB8BkJZXgp-Q54j2AglrwZ-SUG2aUkbAjP26ym9Dnfl7SGKmb3HDAHmnq6DXGNaQxTQ4pzhe0y2mkuLYu-6X3dFmnkB3F1A_v6OyWu-_uQEPcuvo0la5A93GKNPTo00PMB9qlTO_WsaSd7wMWfJ9dcEf8nJx0bsD44vE8I7cfP9xcfq6uvn76cvn-qvK1aJbKK6lk63mnXa1NaCP3XHHftF4I5UPbyGhi6yB0jEtnmqh5AC5ANdor04I4I2-23jmnb2vExY5lvDgMboppRcuMZkqZki7o63_Q-7TmsqFfFJRFN7UoFNsonxNijp2dcz-6fLAM7FGT3TTZoskeNdnjEK8em9d2jOFP4reXAvANwPI07WP-6-v_tv4EsiKftQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Kim, Dockyu</creator><creator>Park, Ha Ju</creator><creator>Sul, Woo Jun</creator><creator>Park, Hyun</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7504-6247</orcidid></search><sort><creationdate>20180501</creationdate><title>Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation</title><author>Kim, Dockyu ; Park, Ha Ju ; Sul, Woo Jun ; Park, Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c6565bc2f7a479dbe2c262c8bc336cdb85e9eba0df125a98e72d0230687c69b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Applied Microbiology</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biphenyl</topic><topic>Biphenyl 2,3-dioxygenase</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Decoloring</topic><topic>Degradation</topic><topic>DNA microarrays</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Humic acids</topic><topic>Immunology</topic><topic>Laccase</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Original Article</topic><topic>Oxygenase</topic><topic>Peroxidase</topic><topic>Pseudomonas</topic><topic>Reductase</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Soils</topic><topic>Taiga &amp; tundra</topic><topic>Tundra</topic><topic>Uncertainty analysis</topic><topic>Vanillate O-demethylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dockyu</creatorcontrib><creatorcontrib>Park, Ha Ju</creatorcontrib><creatorcontrib>Sul, Woo Jun</creatorcontrib><creatorcontrib>Park, Hyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Folia microbiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dockyu</au><au>Park, Ha Ju</au><au>Sul, Woo Jun</au><au>Park, Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation</atitle><jtitle>Folia microbiologica</jtitle><stitle>Folia Microbiol</stitle><addtitle>Folia Microbiol (Praha)</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>63</volume><issue>3</issue><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>0015-5632</issn><eissn>1874-9356</eissn><abstract>Although humic acids (HA) are involved in many biological processes in soils and thus their ecological importance has received much attention, the degradative pathways and corresponding catalytic genes underlying the HA degradation by bacteria remain unclear. To unveil those uncertainties, we analyzed transcriptomes extracted from Pseudomonas sp. PAMC 26793 cells time-dependently induced in the presence of HA in a lab flask. Out of 6288 genes, 299 (microarray) and 585 (RNA-seq) were up-regulated by &gt; 2.0-fold in HA-induced cells, compared with controls. A significant portion (9.7% in microarray and 24.1% in RNA-seq) of these genes are predicted to function in the transport and metabolism of small molecule compounds, which could result from microbial HA degradation. To further identify lignin (a surrogate for HA)-degradative genes, 6288 protein sequences were analyzed against carbohydrate-active enzyme database and a self-curated list of putative lignin degradative genes. Out of 19 genes predicted to function in lignin degradation, several genes encoding laccase, dye-decolorizing peroxidase, vanillate O -demethylase oxygenase and reductase, and biphenyl 2,3-dioxygenase were up-regulated &gt; 2.0-fold in RNA-seq. This induction was further confirmed by qRT-PCR, validating the likely involvement of these genes in the degradation of HA.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>29196950</pmid><doi>10.1007/s12223-017-0573-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7504-6247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0015-5632
ispartof Folia microbiologica, 2018-05, Vol.63 (3), p.315-323
issn 0015-5632
1874-9356
language eng
recordid cdi_proquest_miscellaneous_1971669125
source SpringerLink Journals - AutoHoldings
subjects Acids
Applied Microbiology
Bacteria
Biodegradation
Biological activity
Biomedical and Life Sciences
Biphenyl
Biphenyl 2,3-dioxygenase
Carbohydrates
Catalysis
Decoloring
Degradation
DNA microarrays
Environmental Engineering/Biotechnology
Gene expression
Gene sequencing
Genes
Humic acids
Immunology
Laccase
Life Sciences
Lignin
Metabolism
Microbiology
Microorganisms
Original Article
Oxygenase
Peroxidase
Pseudomonas
Reductase
Ribonucleic acid
RNA
Soils
Taiga & tundra
Tundra
Uncertainty analysis
Vanillate O-demethylase
title Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20Pseudomonas%20sp.%20from%20subarctic%20tundra%20soil:%20pathway%20description%20and%20gene%20discovery%20for%20humic%20acids%20degradation&rft.jtitle=Folia%20microbiologica&rft.au=Kim,%20Dockyu&rft.date=2018-05-01&rft.volume=63&rft.issue=3&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=0015-5632&rft.eissn=1874-9356&rft_id=info:doi/10.1007/s12223-017-0573-0&rft_dat=%3Cproquest_cross%3E1971669125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970874843&rft_id=info:pmid/29196950&rfr_iscdi=true