Hemoglobin α in Pulmonary Endothelium: Ironing Out Nitric Oxide Signaling
In the presence of oxygen, ferrous oxyhemoglobin a (Fe12) scavenges NO by the dioxygenase reaction, with NO reacting with O2-bound Hb a (Fe12- O2) to form nitrate (NO32) and ferric (Fe13) Hb a as products (5). [...]the redox state of the heme controls NO diffusion: when it is reduced and oxygenated,...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory cell and molecular biology 2017-12, Vol.57 (6), p.639-641 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 6 |
container_start_page | 639 |
container_title | American journal of respiratory cell and molecular biology |
container_volume | 57 |
creator | Rochon, Elizabeth R Corti, Paola Gladwin, Mark T |
description | In the presence of oxygen, ferrous oxyhemoglobin a (Fe12) scavenges NO by the dioxygenase reaction, with NO reacting with O2-bound Hb a (Fe12- O2) to form nitrate (NO32) and ferric (Fe13) Hb a as products (5). [...]the redox state of the heme controls NO diffusion: when it is reduced and oxygenated, Hb a inhibits NO signaling, and when it is oxidized in the ferric form, Hb a allows NO to diffuse from endothelium to smooth muscle (Figure 1). A number of studies have suggested that they catalyze electron transfer reactions, such as the reaction with nitrite (NO2~) to form NO under hypoxic conditions, NO scavenging reactions under oxygenated conditions, reactive oxygen and nitrogen species detoxification, and peroxidase reactions that generate oxidized free fatty acids, and are involved in signaling events that appear to protect against apoptosis (8-10). Because these reactions occur at fast rates (rate constant ~6-8 X 107 M2 s2 for Hb a) and at low globin concentrations, they can effectively scavenge NO, decreasing NO diffusional gradients, and thus may provide a mechanism to finely regulate NO signaling (14). From a therapeutic perspective, treatment with Hb a peptide is able to increase intracellular phospho vasodilator-stimulated phosphoprotein, a specific marker of cyclic guanosine monophosphate/protein kinase G-dependent signaling, suggesting that targeting Hb a within pulmonary ECs in patients with PAH will relieve endothelial dysfunction through activation of the sGC pathway. |
doi_str_mv | 10.1165/rcmb.2017-0272ED |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1971647010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1971647010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-86dd6d0805e201ce6200cd624b25192143b24adf62a90f54edb8498d6a0075c83</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EouWxZ4UisWGTMnZsx2GHSqFFFUUC1lYSu8VVEhc7keCz-BG-CfcBCzbjkXxmdOcgdIZhgDFnV66siwEBnMZAUjK63UN9zBIW00xk-6EHSmPMaNZDR94vATARGB-iHslwRkRC-uhhrGu7qGxhmuj7Kwr1qatq2-TuMxo1yrZvujJdfR1NnG1Ms4hmXRs9mtaZMpp9GKWjZ7No8ip8naCDeV55fbp7j9Hr3ehlOI6ns_vJ8GYal0RAGwuuFFcggOmQvNScAJSKE1oQFlJhmhSE5mrOSZ7BnFGtChHuUTwHSFkpkmN0ud27cva9076VtfGlrqq80bbzEmcp5jQFDAG9-IcubedC3A0lSArJhoItVTrrvdNzuXKmDgYkBrn2LNee5dqz3HoOI-e7xV1Ra_U38Cs2-QGj8Xgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978270310</pqid></control><display><type>article</type><title>Hemoglobin α in Pulmonary Endothelium: Ironing Out Nitric Oxide Signaling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Rochon, Elizabeth R ; Corti, Paola ; Gladwin, Mark T</creator><creatorcontrib>Rochon, Elizabeth R ; Corti, Paola ; Gladwin, Mark T</creatorcontrib><description>In the presence of oxygen, ferrous oxyhemoglobin a (Fe12) scavenges NO by the dioxygenase reaction, with NO reacting with O2-bound Hb a (Fe12- O2) to form nitrate (NO32) and ferric (Fe13) Hb a as products (5). [...]the redox state of the heme controls NO diffusion: when it is reduced and oxygenated, Hb a inhibits NO signaling, and when it is oxidized in the ferric form, Hb a allows NO to diffuse from endothelium to smooth muscle (Figure 1). A number of studies have suggested that they catalyze electron transfer reactions, such as the reaction with nitrite (NO2~) to form NO under hypoxic conditions, NO scavenging reactions under oxygenated conditions, reactive oxygen and nitrogen species detoxification, and peroxidase reactions that generate oxidized free fatty acids, and are involved in signaling events that appear to protect against apoptosis (8-10). Because these reactions occur at fast rates (rate constant ~6-8 X 107 M2 s2 for Hb a) and at low globin concentrations, they can effectively scavenge NO, decreasing NO diffusional gradients, and thus may provide a mechanism to finely regulate NO signaling (14). From a therapeutic perspective, treatment with Hb a peptide is able to increase intracellular phospho vasodilator-stimulated phosphoprotein, a specific marker of cyclic guanosine monophosphate/protein kinase G-dependent signaling, suggesting that targeting Hb a within pulmonary ECs in patients with PAH will relieve endothelial dysfunction through activation of the sGC pathway.</description><identifier>ISSN: 1044-1549</identifier><identifier>EISSN: 1535-4989</identifier><identifier>DOI: 10.1165/rcmb.2017-0272ED</identifier><identifier>PMID: 29192832</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Bioavailability ; Biochemistry ; Blood ; Cytochrome ; Endothelium ; Hemoglobin ; Hypoxia ; Kinases ; Metabolism ; Nitric oxide ; Proteins ; Smooth muscle ; Zebrafish</subject><ispartof>American journal of respiratory cell and molecular biology, 2017-12, Vol.57 (6), p.639-641</ispartof><rights>Copyright American Thoracic Society Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-86dd6d0805e201ce6200cd624b25192143b24adf62a90f54edb8498d6a0075c83</cites><orcidid>0000-0001-7267-9006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29192832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rochon, Elizabeth R</creatorcontrib><creatorcontrib>Corti, Paola</creatorcontrib><creatorcontrib>Gladwin, Mark T</creatorcontrib><title>Hemoglobin α in Pulmonary Endothelium: Ironing Out Nitric Oxide Signaling</title><title>American journal of respiratory cell and molecular biology</title><addtitle>Am J Respir Cell Mol Biol</addtitle><description>In the presence of oxygen, ferrous oxyhemoglobin a (Fe12) scavenges NO by the dioxygenase reaction, with NO reacting with O2-bound Hb a (Fe12- O2) to form nitrate (NO32) and ferric (Fe13) Hb a as products (5). [...]the redox state of the heme controls NO diffusion: when it is reduced and oxygenated, Hb a inhibits NO signaling, and when it is oxidized in the ferric form, Hb a allows NO to diffuse from endothelium to smooth muscle (Figure 1). A number of studies have suggested that they catalyze electron transfer reactions, such as the reaction with nitrite (NO2~) to form NO under hypoxic conditions, NO scavenging reactions under oxygenated conditions, reactive oxygen and nitrogen species detoxification, and peroxidase reactions that generate oxidized free fatty acids, and are involved in signaling events that appear to protect against apoptosis (8-10). Because these reactions occur at fast rates (rate constant ~6-8 X 107 M2 s2 for Hb a) and at low globin concentrations, they can effectively scavenge NO, decreasing NO diffusional gradients, and thus may provide a mechanism to finely regulate NO signaling (14). From a therapeutic perspective, treatment with Hb a peptide is able to increase intracellular phospho vasodilator-stimulated phosphoprotein, a specific marker of cyclic guanosine monophosphate/protein kinase G-dependent signaling, suggesting that targeting Hb a within pulmonary ECs in patients with PAH will relieve endothelial dysfunction through activation of the sGC pathway.</description><subject>Bioavailability</subject><subject>Biochemistry</subject><subject>Blood</subject><subject>Cytochrome</subject><subject>Endothelium</subject><subject>Hemoglobin</subject><subject>Hypoxia</subject><subject>Kinases</subject><subject>Metabolism</subject><subject>Nitric oxide</subject><subject>Proteins</subject><subject>Smooth muscle</subject><subject>Zebrafish</subject><issn>1044-1549</issn><issn>1535-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkMtOwzAQRS0EouWxZ4UisWGTMnZsx2GHSqFFFUUC1lYSu8VVEhc7keCz-BG-CfcBCzbjkXxmdOcgdIZhgDFnV66siwEBnMZAUjK63UN9zBIW00xk-6EHSmPMaNZDR94vATARGB-iHslwRkRC-uhhrGu7qGxhmuj7Kwr1qatq2-TuMxo1yrZvujJdfR1NnG1Ms4hmXRs9mtaZMpp9GKWjZ7No8ip8naCDeV55fbp7j9Hr3ehlOI6ns_vJ8GYal0RAGwuuFFcggOmQvNScAJSKE1oQFlJhmhSE5mrOSZ7BnFGtChHuUTwHSFkpkmN0ud27cva9076VtfGlrqq80bbzEmcp5jQFDAG9-IcubedC3A0lSArJhoItVTrrvdNzuXKmDgYkBrn2LNee5dqz3HoOI-e7xV1Ra_U38Cs2-QGj8Xgk</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Rochon, Elizabeth R</creator><creator>Corti, Paola</creator><creator>Gladwin, Mark T</creator><general>American Thoracic Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7267-9006</orcidid></search><sort><creationdate>201712</creationdate><title>Hemoglobin α in Pulmonary Endothelium: Ironing Out Nitric Oxide Signaling</title><author>Rochon, Elizabeth R ; Corti, Paola ; Gladwin, Mark T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-86dd6d0805e201ce6200cd624b25192143b24adf62a90f54edb8498d6a0075c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bioavailability</topic><topic>Biochemistry</topic><topic>Blood</topic><topic>Cytochrome</topic><topic>Endothelium</topic><topic>Hemoglobin</topic><topic>Hypoxia</topic><topic>Kinases</topic><topic>Metabolism</topic><topic>Nitric oxide</topic><topic>Proteins</topic><topic>Smooth muscle</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rochon, Elizabeth R</creatorcontrib><creatorcontrib>Corti, Paola</creatorcontrib><creatorcontrib>Gladwin, Mark T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of respiratory cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rochon, Elizabeth R</au><au>Corti, Paola</au><au>Gladwin, Mark T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemoglobin α in Pulmonary Endothelium: Ironing Out Nitric Oxide Signaling</atitle><jtitle>American journal of respiratory cell and molecular biology</jtitle><addtitle>Am J Respir Cell Mol Biol</addtitle><date>2017-12</date><risdate>2017</risdate><volume>57</volume><issue>6</issue><spage>639</spage><epage>641</epage><pages>639-641</pages><issn>1044-1549</issn><eissn>1535-4989</eissn><abstract>In the presence of oxygen, ferrous oxyhemoglobin a (Fe12) scavenges NO by the dioxygenase reaction, with NO reacting with O2-bound Hb a (Fe12- O2) to form nitrate (NO32) and ferric (Fe13) Hb a as products (5). [...]the redox state of the heme controls NO diffusion: when it is reduced and oxygenated, Hb a inhibits NO signaling, and when it is oxidized in the ferric form, Hb a allows NO to diffuse from endothelium to smooth muscle (Figure 1). A number of studies have suggested that they catalyze electron transfer reactions, such as the reaction with nitrite (NO2~) to form NO under hypoxic conditions, NO scavenging reactions under oxygenated conditions, reactive oxygen and nitrogen species detoxification, and peroxidase reactions that generate oxidized free fatty acids, and are involved in signaling events that appear to protect against apoptosis (8-10). Because these reactions occur at fast rates (rate constant ~6-8 X 107 M2 s2 for Hb a) and at low globin concentrations, they can effectively scavenge NO, decreasing NO diffusional gradients, and thus may provide a mechanism to finely regulate NO signaling (14). From a therapeutic perspective, treatment with Hb a peptide is able to increase intracellular phospho vasodilator-stimulated phosphoprotein, a specific marker of cyclic guanosine monophosphate/protein kinase G-dependent signaling, suggesting that targeting Hb a within pulmonary ECs in patients with PAH will relieve endothelial dysfunction through activation of the sGC pathway.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>29192832</pmid><doi>10.1165/rcmb.2017-0272ED</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-7267-9006</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-1549 |
ispartof | American journal of respiratory cell and molecular biology, 2017-12, Vol.57 (6), p.639-641 |
issn | 1044-1549 1535-4989 |
language | eng |
recordid | cdi_proquest_miscellaneous_1971647010 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete; Alma/SFX Local Collection |
subjects | Bioavailability Biochemistry Blood Cytochrome Endothelium Hemoglobin Hypoxia Kinases Metabolism Nitric oxide Proteins Smooth muscle Zebrafish |
title | Hemoglobin α in Pulmonary Endothelium: Ironing Out Nitric Oxide Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemoglobin%20%CE%B1%20in%20Pulmonary%20Endothelium:%20Ironing%20Out%20Nitric%20Oxide%20Signaling&rft.jtitle=American%20journal%20of%20respiratory%20cell%20and%20molecular%20biology&rft.au=Rochon,%20Elizabeth%20R&rft.date=2017-12&rft.volume=57&rft.issue=6&rft.spage=639&rft.epage=641&rft.pages=639-641&rft.issn=1044-1549&rft.eissn=1535-4989&rft_id=info:doi/10.1165/rcmb.2017-0272ED&rft_dat=%3Cproquest_cross%3E1971647010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978270310&rft_id=info:pmid/29192832&rfr_iscdi=true |