Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms

Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicon (Oxford) 2008-08, Vol.52 (2), p.195-202
Hauptverfasser: Marin-Kuan, Maricel, Cavin, Christophe, Delatour, Thierry, Schilter, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 195
container_title Toxicon (Oxford)
container_volume 52
creator Marin-Kuan, Maricel
Cavin, Christophe
Delatour, Thierry
Schilter, Benoît
description Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.
doi_str_mv 10.1016/j.toxicon.2008.04.166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19714740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004101010800336X</els_id><sourcerecordid>19714740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</originalsourceid><addsrcrecordid>eNqF0MFu1DAQgGELgehSeASQL_SWdOw4TnxCVdUCUqVygLPlTCbUS2IvdnZp356sNoJjT758M7Z_xt4LKAUIfbkt5_joMYZSArQlqFJo_YJtRNuYohI1vGQbACUKWPgZe5PzFgCq1ujX7Ey0WhkDesO-3eNDcsdVgV9xdAl9iD8pePTzE_fhEMcDZe44xmk30iMPNP-J6RePA6edXyTNHvlE-OCCz1N-y14Nbsz0bj3P2Y_bm-_XX4q7-89fr6_uClRSzYXqpaoHOZiupVaqVvcNdFJrJbWrkJCqRjWmwdqQ6-uhk0OlVIcO0NQCgapzdnHau0vx957ybCefkcbRBYr7bIVphGoULLA-QUwx50SD3SU_ufRkBdhjSru1a0p7TGlB2SXlMvdhvWDfTdT_n1rbLeDjClxGNw7JBfT5n5Ow_KZp1OI-nRwtOQ6eks3oKSD1PhHOto_-maf8Bdeklho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19714740</pqid></control><display><type>article</type><title>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Marin-Kuan, Maricel ; Cavin, Christophe ; Delatour, Thierry ; Schilter, Benoît</creator><creatorcontrib>Marin-Kuan, Maricel ; Cavin, Christophe ; Delatour, Thierry ; Schilter, Benoît</creatorcontrib><description>Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.</description><identifier>ISSN: 0041-0101</identifier><identifier>EISSN: 1879-3150</identifier><identifier>DOI: 10.1016/j.toxicon.2008.04.166</identifier><identifier>PMID: 18649906</identifier><identifier>CODEN: TOXIA6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animal poisons toxicology. Antivenoms ; Animals ; Biological and medical sciences ; Carcinogenicity ; Carcinogens - toxicity ; Cell signalling ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Epigenesis, Genetic ; Epigenetic ; Food Microbiology ; Gene Expression Regulation, Neoplastic - drug effects ; Humans ; Kidney Neoplasms - chemically induced ; Kidney Neoplasms - genetics ; Mechanism of action ; Medical sciences ; Mycotoxins - toxicity ; Nephrotoxicity ; Ochratoxin A ; Ochratoxins - toxicity ; Plant poisons toxicology ; Risk Assessment ; Toxicogenetics ; Toxicology</subject><ispartof>Toxicon (Oxford), 2008-08, Vol.52 (2), p.195-202</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</citedby><cites>FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.toxicon.2008.04.166$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20664774$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18649906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marin-Kuan, Maricel</creatorcontrib><creatorcontrib>Cavin, Christophe</creatorcontrib><creatorcontrib>Delatour, Thierry</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><title>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</title><title>Toxicon (Oxford)</title><addtitle>Toxicon</addtitle><description>Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.</description><subject>Animal poisons toxicology. Antivenoms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carcinogenicity</subject><subject>Carcinogens - toxicity</subject><subject>Cell signalling</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic</subject><subject>Food Microbiology</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Humans</subject><subject>Kidney Neoplasms - chemically induced</subject><subject>Kidney Neoplasms - genetics</subject><subject>Mechanism of action</subject><subject>Medical sciences</subject><subject>Mycotoxins - toxicity</subject><subject>Nephrotoxicity</subject><subject>Ochratoxin A</subject><subject>Ochratoxins - toxicity</subject><subject>Plant poisons toxicology</subject><subject>Risk Assessment</subject><subject>Toxicogenetics</subject><subject>Toxicology</subject><issn>0041-0101</issn><issn>1879-3150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MFu1DAQgGELgehSeASQL_SWdOw4TnxCVdUCUqVygLPlTCbUS2IvdnZp356sNoJjT758M7Z_xt4LKAUIfbkt5_joMYZSArQlqFJo_YJtRNuYohI1vGQbACUKWPgZe5PzFgCq1ujX7Ey0WhkDesO-3eNDcsdVgV9xdAl9iD8pePTzE_fhEMcDZe44xmk30iMPNP-J6RePA6edXyTNHvlE-OCCz1N-y14Nbsz0bj3P2Y_bm-_XX4q7-89fr6_uClRSzYXqpaoHOZiupVaqVvcNdFJrJbWrkJCqRjWmwdqQ6-uhk0OlVIcO0NQCgapzdnHau0vx957ybCefkcbRBYr7bIVphGoULLA-QUwx50SD3SU_ufRkBdhjSru1a0p7TGlB2SXlMvdhvWDfTdT_n1rbLeDjClxGNw7JBfT5n5Ow_KZp1OI-nRwtOQ6eks3oKSD1PhHOto_-maf8Bdeklho</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Marin-Kuan, Maricel</creator><creator>Cavin, Christophe</creator><creator>Delatour, Thierry</creator><creator>Schilter, Benoît</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20080801</creationdate><title>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</title><author>Marin-Kuan, Maricel ; Cavin, Christophe ; Delatour, Thierry ; Schilter, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal poisons toxicology. Antivenoms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carcinogenicity</topic><topic>Carcinogens - toxicity</topic><topic>Cell signalling</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic</topic><topic>Food Microbiology</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Humans</topic><topic>Kidney Neoplasms - chemically induced</topic><topic>Kidney Neoplasms - genetics</topic><topic>Mechanism of action</topic><topic>Medical sciences</topic><topic>Mycotoxins - toxicity</topic><topic>Nephrotoxicity</topic><topic>Ochratoxin A</topic><topic>Ochratoxins - toxicity</topic><topic>Plant poisons toxicology</topic><topic>Risk Assessment</topic><topic>Toxicogenetics</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin-Kuan, Maricel</creatorcontrib><creatorcontrib>Cavin, Christophe</creatorcontrib><creatorcontrib>Delatour, Thierry</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Toxicon (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marin-Kuan, Maricel</au><au>Cavin, Christophe</au><au>Delatour, Thierry</au><au>Schilter, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</atitle><jtitle>Toxicon (Oxford)</jtitle><addtitle>Toxicon</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>52</volume><issue>2</issue><spage>195</spage><epage>202</epage><pages>195-202</pages><issn>0041-0101</issn><eissn>1879-3150</eissn><coden>TOXIA6</coden><abstract>Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18649906</pmid><doi>10.1016/j.toxicon.2008.04.166</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-0101
ispartof Toxicon (Oxford), 2008-08, Vol.52 (2), p.195-202
issn 0041-0101
1879-3150
language eng
recordid cdi_proquest_miscellaneous_19714740
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animal poisons toxicology. Antivenoms
Animals
Biological and medical sciences
Carcinogenicity
Carcinogens - toxicity
Cell signalling
Disease Models, Animal
Dose-Response Relationship, Drug
Epigenesis, Genetic
Epigenetic
Food Microbiology
Gene Expression Regulation, Neoplastic - drug effects
Humans
Kidney Neoplasms - chemically induced
Kidney Neoplasms - genetics
Mechanism of action
Medical sciences
Mycotoxins - toxicity
Nephrotoxicity
Ochratoxin A
Ochratoxins - toxicity
Plant poisons toxicology
Risk Assessment
Toxicogenetics
Toxicology
title Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ochratoxin%20A%20carcinogenicity%20involves%20a%20complex%20network%20of%20epigenetic%20mechanisms&rft.jtitle=Toxicon%20(Oxford)&rft.au=Marin-Kuan,%20Maricel&rft.date=2008-08-01&rft.volume=52&rft.issue=2&rft.spage=195&rft.epage=202&rft.pages=195-202&rft.issn=0041-0101&rft.eissn=1879-3150&rft.coden=TOXIA6&rft_id=info:doi/10.1016/j.toxicon.2008.04.166&rft_dat=%3Cproquest_cross%3E19714740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19714740&rft_id=info:pmid/18649906&rft_els_id=S004101010800336X&rfr_iscdi=true