Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms
Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of t...
Gespeichert in:
Veröffentlicht in: | Toxicon (Oxford) 2008-08, Vol.52 (2), p.195-202 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 195 |
container_title | Toxicon (Oxford) |
container_volume | 52 |
creator | Marin-Kuan, Maricel Cavin, Christophe Delatour, Thierry Schilter, Benoît |
description | Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded. |
doi_str_mv | 10.1016/j.toxicon.2008.04.166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19714740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004101010800336X</els_id><sourcerecordid>19714740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</originalsourceid><addsrcrecordid>eNqF0MFu1DAQgGELgehSeASQL_SWdOw4TnxCVdUCUqVygLPlTCbUS2IvdnZp356sNoJjT758M7Z_xt4LKAUIfbkt5_joMYZSArQlqFJo_YJtRNuYohI1vGQbACUKWPgZe5PzFgCq1ujX7Ey0WhkDesO-3eNDcsdVgV9xdAl9iD8pePTzE_fhEMcDZe44xmk30iMPNP-J6RePA6edXyTNHvlE-OCCz1N-y14Nbsz0bj3P2Y_bm-_XX4q7-89fr6_uClRSzYXqpaoHOZiupVaqVvcNdFJrJbWrkJCqRjWmwdqQ6-uhk0OlVIcO0NQCgapzdnHau0vx957ybCefkcbRBYr7bIVphGoULLA-QUwx50SD3SU_ufRkBdhjSru1a0p7TGlB2SXlMvdhvWDfTdT_n1rbLeDjClxGNw7JBfT5n5Ow_KZp1OI-nRwtOQ6eks3oKSD1PhHOto_-maf8Bdeklho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19714740</pqid></control><display><type>article</type><title>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Marin-Kuan, Maricel ; Cavin, Christophe ; Delatour, Thierry ; Schilter, Benoît</creator><creatorcontrib>Marin-Kuan, Maricel ; Cavin, Christophe ; Delatour, Thierry ; Schilter, Benoît</creatorcontrib><description>Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.</description><identifier>ISSN: 0041-0101</identifier><identifier>EISSN: 1879-3150</identifier><identifier>DOI: 10.1016/j.toxicon.2008.04.166</identifier><identifier>PMID: 18649906</identifier><identifier>CODEN: TOXIA6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animal poisons toxicology. Antivenoms ; Animals ; Biological and medical sciences ; Carcinogenicity ; Carcinogens - toxicity ; Cell signalling ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Epigenesis, Genetic ; Epigenetic ; Food Microbiology ; Gene Expression Regulation, Neoplastic - drug effects ; Humans ; Kidney Neoplasms - chemically induced ; Kidney Neoplasms - genetics ; Mechanism of action ; Medical sciences ; Mycotoxins - toxicity ; Nephrotoxicity ; Ochratoxin A ; Ochratoxins - toxicity ; Plant poisons toxicology ; Risk Assessment ; Toxicogenetics ; Toxicology</subject><ispartof>Toxicon (Oxford), 2008-08, Vol.52 (2), p.195-202</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</citedby><cites>FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.toxicon.2008.04.166$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20664774$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18649906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marin-Kuan, Maricel</creatorcontrib><creatorcontrib>Cavin, Christophe</creatorcontrib><creatorcontrib>Delatour, Thierry</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><title>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</title><title>Toxicon (Oxford)</title><addtitle>Toxicon</addtitle><description>Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.</description><subject>Animal poisons toxicology. Antivenoms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carcinogenicity</subject><subject>Carcinogens - toxicity</subject><subject>Cell signalling</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic</subject><subject>Food Microbiology</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Humans</subject><subject>Kidney Neoplasms - chemically induced</subject><subject>Kidney Neoplasms - genetics</subject><subject>Mechanism of action</subject><subject>Medical sciences</subject><subject>Mycotoxins - toxicity</subject><subject>Nephrotoxicity</subject><subject>Ochratoxin A</subject><subject>Ochratoxins - toxicity</subject><subject>Plant poisons toxicology</subject><subject>Risk Assessment</subject><subject>Toxicogenetics</subject><subject>Toxicology</subject><issn>0041-0101</issn><issn>1879-3150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MFu1DAQgGELgehSeASQL_SWdOw4TnxCVdUCUqVygLPlTCbUS2IvdnZp356sNoJjT758M7Z_xt4LKAUIfbkt5_joMYZSArQlqFJo_YJtRNuYohI1vGQbACUKWPgZe5PzFgCq1ujX7Ey0WhkDesO-3eNDcsdVgV9xdAl9iD8pePTzE_fhEMcDZe44xmk30iMPNP-J6RePA6edXyTNHvlE-OCCz1N-y14Nbsz0bj3P2Y_bm-_XX4q7-89fr6_uClRSzYXqpaoHOZiupVaqVvcNdFJrJbWrkJCqRjWmwdqQ6-uhk0OlVIcO0NQCgapzdnHau0vx957ybCefkcbRBYr7bIVphGoULLA-QUwx50SD3SU_ufRkBdhjSru1a0p7TGlB2SXlMvdhvWDfTdT_n1rbLeDjClxGNw7JBfT5n5Ow_KZp1OI-nRwtOQ6eks3oKSD1PhHOto_-maf8Bdeklho</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Marin-Kuan, Maricel</creator><creator>Cavin, Christophe</creator><creator>Delatour, Thierry</creator><creator>Schilter, Benoît</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20080801</creationdate><title>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</title><author>Marin-Kuan, Maricel ; Cavin, Christophe ; Delatour, Thierry ; Schilter, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4d245f2f9b8e82486d70b266426a3cece374797c59ead5fb2f344bca0c951c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal poisons toxicology. Antivenoms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carcinogenicity</topic><topic>Carcinogens - toxicity</topic><topic>Cell signalling</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic</topic><topic>Food Microbiology</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Humans</topic><topic>Kidney Neoplasms - chemically induced</topic><topic>Kidney Neoplasms - genetics</topic><topic>Mechanism of action</topic><topic>Medical sciences</topic><topic>Mycotoxins - toxicity</topic><topic>Nephrotoxicity</topic><topic>Ochratoxin A</topic><topic>Ochratoxins - toxicity</topic><topic>Plant poisons toxicology</topic><topic>Risk Assessment</topic><topic>Toxicogenetics</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin-Kuan, Maricel</creatorcontrib><creatorcontrib>Cavin, Christophe</creatorcontrib><creatorcontrib>Delatour, Thierry</creatorcontrib><creatorcontrib>Schilter, Benoît</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Toxicon (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marin-Kuan, Maricel</au><au>Cavin, Christophe</au><au>Delatour, Thierry</au><au>Schilter, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms</atitle><jtitle>Toxicon (Oxford)</jtitle><addtitle>Toxicon</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>52</volume><issue>2</issue><spage>195</spage><epage>202</epage><pages>195-202</pages><issn>0041-0101</issn><eissn>1879-3150</eissn><coden>TOXIA6</coden><abstract>Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18649906</pmid><doi>10.1016/j.toxicon.2008.04.166</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-0101 |
ispartof | Toxicon (Oxford), 2008-08, Vol.52 (2), p.195-202 |
issn | 0041-0101 1879-3150 |
language | eng |
recordid | cdi_proquest_miscellaneous_19714740 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animal poisons toxicology. Antivenoms Animals Biological and medical sciences Carcinogenicity Carcinogens - toxicity Cell signalling Disease Models, Animal Dose-Response Relationship, Drug Epigenesis, Genetic Epigenetic Food Microbiology Gene Expression Regulation, Neoplastic - drug effects Humans Kidney Neoplasms - chemically induced Kidney Neoplasms - genetics Mechanism of action Medical sciences Mycotoxins - toxicity Nephrotoxicity Ochratoxin A Ochratoxins - toxicity Plant poisons toxicology Risk Assessment Toxicogenetics Toxicology |
title | Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ochratoxin%20A%20carcinogenicity%20involves%20a%20complex%20network%20of%20epigenetic%20mechanisms&rft.jtitle=Toxicon%20(Oxford)&rft.au=Marin-Kuan,%20Maricel&rft.date=2008-08-01&rft.volume=52&rft.issue=2&rft.spage=195&rft.epage=202&rft.pages=195-202&rft.issn=0041-0101&rft.eissn=1879-3150&rft.coden=TOXIA6&rft_id=info:doi/10.1016/j.toxicon.2008.04.166&rft_dat=%3Cproquest_cross%3E19714740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19714740&rft_id=info:pmid/18649906&rft_els_id=S004101010800336X&rfr_iscdi=true |