Uncertainty analysis of emission estimates in the RAINS integrated assessment model

Uncertainty is a critical issue for all models that attempt to quantify the necessary emission reductions that are required to meet environmental quality targets. This paper discusses a methodology specifically developed to analyse the uncertainties in the emission estimates with the regional air po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & policy 2005-12, Vol.8 (6), p.601-613
Hauptverfasser: Schöpp, Wolfgang, Klimont, Zbigniew, Suutari, Riku, Cofala, Janusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 6
container_start_page 601
container_title Environmental science & policy
container_volume 8
creator Schöpp, Wolfgang
Klimont, Zbigniew
Suutari, Riku
Cofala, Janusz
description Uncertainty is a critical issue for all models that attempt to quantify the necessary emission reductions that are required to meet environmental quality targets. This paper discusses a methodology specifically developed to analyse the uncertainties in the emission estimates with the regional air pollution information and simulation (RAINS) integrated assessment model, considering the uncertainties in the model parameters themselves. Overall, it was found that a typical range of uncertainties for modeled national emissions of sulfur dioxide, nitrogen oxides and ammonia in Europe lies between 10 and 30%. In general, the uncertainties are strongly dependent on the potential for error compensation. This compensation potential is larger (and uncertainties are smaller) if calculated emissions are composed of a larger number of equal-sized source categories, where the errors in input parameters are not correlated with each other. Thus, estimates of the national total emissions are generally more certain than estimates of sectoral emissions. A sensitivity analysis with respect to the uncertainty in input parameters showed that the actual uncertainties are critically influenced by the specific situation (pollutant, year, country). However, the emission factor is an important contributor to the uncertainty in estimates of historical emissions, while uncertainty in the activity data dominates the future estimates.
doi_str_mv 10.1016/j.envsci.2005.06.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19708627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1462901105001097</els_id><sourcerecordid>19708627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-176d54da1ce50404926c2f3437a3f7525c0bb09180ad801fe75c8ae67f095d6a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwByy8YpcwzsNONkhVxUuqQKJ0bbnOBFylTvG4lfr3uAprVvPQvVczJ0luOWQcuLjfZOgOZGyWA1QZiAygPksmvJZFKkouzmNfijxtgPPL5IpoAwCyFs0kWa6cQR-0deHItNP9kSyxoWO4tUR2cAwp2K0OSMw6Fr6Rfcxe35ZxCPjl475lmgiJtugC2w4t9tfJRad7wpu_Ok1WT4-f85d08f78Op8tUlNCEVIuRVuVreYGKyihbHJh8q4oC6mLTlZ5ZWC9hobXoNsaeIeyMrVGITtoqlboYprcjbk7P_zs450q3myw77XDYU-KNxJqkcsoLEeh8QORx07tfPzJHxUHdSKoNmokqE4EFQgVCUbbw2jD-MTBoldRgZFXaz2aoNrB_h_wC6gOfGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19708627</pqid></control><display><type>article</type><title>Uncertainty analysis of emission estimates in the RAINS integrated assessment model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Schöpp, Wolfgang ; Klimont, Zbigniew ; Suutari, Riku ; Cofala, Janusz</creator><creatorcontrib>Schöpp, Wolfgang ; Klimont, Zbigniew ; Suutari, Riku ; Cofala, Janusz</creatorcontrib><description>Uncertainty is a critical issue for all models that attempt to quantify the necessary emission reductions that are required to meet environmental quality targets. This paper discusses a methodology specifically developed to analyse the uncertainties in the emission estimates with the regional air pollution information and simulation (RAINS) integrated assessment model, considering the uncertainties in the model parameters themselves. Overall, it was found that a typical range of uncertainties for modeled national emissions of sulfur dioxide, nitrogen oxides and ammonia in Europe lies between 10 and 30%. In general, the uncertainties are strongly dependent on the potential for error compensation. This compensation potential is larger (and uncertainties are smaller) if calculated emissions are composed of a larger number of equal-sized source categories, where the errors in input parameters are not correlated with each other. Thus, estimates of the national total emissions are generally more certain than estimates of sectoral emissions. A sensitivity analysis with respect to the uncertainty in input parameters showed that the actual uncertainties are critically influenced by the specific situation (pollutant, year, country). However, the emission factor is an important contributor to the uncertainty in estimates of historical emissions, while uncertainty in the activity data dominates the future estimates.</description><identifier>ISSN: 1462-9011</identifier><identifier>EISSN: 1873-6416</identifier><identifier>DOI: 10.1016/j.envsci.2005.06.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Error propagation ; Modeling European emissions ; NH 3 ; NO x ; SO 2 ; Uncertainty</subject><ispartof>Environmental science &amp; policy, 2005-12, Vol.8 (6), p.601-613</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-176d54da1ce50404926c2f3437a3f7525c0bb09180ad801fe75c8ae67f095d6a3</citedby><cites>FETCH-LOGICAL-c403t-176d54da1ce50404926c2f3437a3f7525c0bb09180ad801fe75c8ae67f095d6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsci.2005.06.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schöpp, Wolfgang</creatorcontrib><creatorcontrib>Klimont, Zbigniew</creatorcontrib><creatorcontrib>Suutari, Riku</creatorcontrib><creatorcontrib>Cofala, Janusz</creatorcontrib><title>Uncertainty analysis of emission estimates in the RAINS integrated assessment model</title><title>Environmental science &amp; policy</title><description>Uncertainty is a critical issue for all models that attempt to quantify the necessary emission reductions that are required to meet environmental quality targets. This paper discusses a methodology specifically developed to analyse the uncertainties in the emission estimates with the regional air pollution information and simulation (RAINS) integrated assessment model, considering the uncertainties in the model parameters themselves. Overall, it was found that a typical range of uncertainties for modeled national emissions of sulfur dioxide, nitrogen oxides and ammonia in Europe lies between 10 and 30%. In general, the uncertainties are strongly dependent on the potential for error compensation. This compensation potential is larger (and uncertainties are smaller) if calculated emissions are composed of a larger number of equal-sized source categories, where the errors in input parameters are not correlated with each other. Thus, estimates of the national total emissions are generally more certain than estimates of sectoral emissions. A sensitivity analysis with respect to the uncertainty in input parameters showed that the actual uncertainties are critically influenced by the specific situation (pollutant, year, country). However, the emission factor is an important contributor to the uncertainty in estimates of historical emissions, while uncertainty in the activity data dominates the future estimates.</description><subject>Error propagation</subject><subject>Modeling European emissions</subject><subject>NH 3</subject><subject>NO x</subject><subject>SO 2</subject><subject>Uncertainty</subject><issn>1462-9011</issn><issn>1873-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwByy8YpcwzsNONkhVxUuqQKJ0bbnOBFylTvG4lfr3uAprVvPQvVczJ0luOWQcuLjfZOgOZGyWA1QZiAygPksmvJZFKkouzmNfijxtgPPL5IpoAwCyFs0kWa6cQR-0deHItNP9kSyxoWO4tUR2cAwp2K0OSMw6Fr6Rfcxe35ZxCPjl475lmgiJtugC2w4t9tfJRad7wpu_Ok1WT4-f85d08f78Op8tUlNCEVIuRVuVreYGKyihbHJh8q4oC6mLTlZ5ZWC9hobXoNsaeIeyMrVGITtoqlboYprcjbk7P_zs450q3myw77XDYU-KNxJqkcsoLEeh8QORx07tfPzJHxUHdSKoNmokqE4EFQgVCUbbw2jD-MTBoldRgZFXaz2aoNrB_h_wC6gOfGM</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Schöpp, Wolfgang</creator><creator>Klimont, Zbigniew</creator><creator>Suutari, Riku</creator><creator>Cofala, Janusz</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>200512</creationdate><title>Uncertainty analysis of emission estimates in the RAINS integrated assessment model</title><author>Schöpp, Wolfgang ; Klimont, Zbigniew ; Suutari, Riku ; Cofala, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-176d54da1ce50404926c2f3437a3f7525c0bb09180ad801fe75c8ae67f095d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Error propagation</topic><topic>Modeling European emissions</topic><topic>NH 3</topic><topic>NO x</topic><topic>SO 2</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schöpp, Wolfgang</creatorcontrib><creatorcontrib>Klimont, Zbigniew</creatorcontrib><creatorcontrib>Suutari, Riku</creatorcontrib><creatorcontrib>Cofala, Janusz</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental science &amp; policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schöpp, Wolfgang</au><au>Klimont, Zbigniew</au><au>Suutari, Riku</au><au>Cofala, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty analysis of emission estimates in the RAINS integrated assessment model</atitle><jtitle>Environmental science &amp; policy</jtitle><date>2005-12</date><risdate>2005</risdate><volume>8</volume><issue>6</issue><spage>601</spage><epage>613</epage><pages>601-613</pages><issn>1462-9011</issn><eissn>1873-6416</eissn><abstract>Uncertainty is a critical issue for all models that attempt to quantify the necessary emission reductions that are required to meet environmental quality targets. This paper discusses a methodology specifically developed to analyse the uncertainties in the emission estimates with the regional air pollution information and simulation (RAINS) integrated assessment model, considering the uncertainties in the model parameters themselves. Overall, it was found that a typical range of uncertainties for modeled national emissions of sulfur dioxide, nitrogen oxides and ammonia in Europe lies between 10 and 30%. In general, the uncertainties are strongly dependent on the potential for error compensation. This compensation potential is larger (and uncertainties are smaller) if calculated emissions are composed of a larger number of equal-sized source categories, where the errors in input parameters are not correlated with each other. Thus, estimates of the national total emissions are generally more certain than estimates of sectoral emissions. A sensitivity analysis with respect to the uncertainty in input parameters showed that the actual uncertainties are critically influenced by the specific situation (pollutant, year, country). However, the emission factor is an important contributor to the uncertainty in estimates of historical emissions, while uncertainty in the activity data dominates the future estimates.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsci.2005.06.008</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-9011
ispartof Environmental science & policy, 2005-12, Vol.8 (6), p.601-613
issn 1462-9011
1873-6416
language eng
recordid cdi_proquest_miscellaneous_19708627
source Access via ScienceDirect (Elsevier)
subjects Error propagation
Modeling European emissions
NH 3
NO x
SO 2
Uncertainty
title Uncertainty analysis of emission estimates in the RAINS integrated assessment model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20analysis%20of%20emission%20estimates%20in%20the%20RAINS%20integrated%20assessment%20model&rft.jtitle=Environmental%20science%20&%20policy&rft.au=Sch%C3%B6pp,%20Wolfgang&rft.date=2005-12&rft.volume=8&rft.issue=6&rft.spage=601&rft.epage=613&rft.pages=601-613&rft.issn=1462-9011&rft.eissn=1873-6416&rft_id=info:doi/10.1016/j.envsci.2005.06.008&rft_dat=%3Cproquest_cross%3E19708627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19708627&rft_id=info:pmid/&rft_els_id=S1462901105001097&rfr_iscdi=true