Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
A direct measurement of cosmic-ray electrons and positrons with unprecedentedly high energy resolution reveals a spectral break at about 0.9 teraelectronvolts, confirming the evidence found by previous indirect measurements. A break in the cosmic-ray spectrum The spectrum of cosmic-ray electrons and...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2017-12, Vol.552 (7683), p.63-66 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 7683 |
container_start_page | 63 |
container_title | Nature (London) |
container_volume | 552 |
creator | An, Q Asfandiyarov, R Bernardini, P Bertucci, B Cai, M. S Chang, J Chen, D. Y Chen, H. F Chen, W Cui, M. Y Cui, T. S DAmone, A De Benedittis, A Di Santo, M Dong, T. K Dong, Y. F Dong, Z. X Droz, D Duan, K. K Duan, J. L Duranti, M DUrso, D Fan, R. R Fang, F Feng, C. Q Feng, L Fusco, P Gallo, V Gao, M Gao, S. S Gong, K Guo, D. Y Guo, J. H Huang, G. S Huang, Y. Y Ionica, M Jiang, D Jin, X Kong, J Lei, S. J Li, S Li, X Liang, Y. M Liu, H Liu, J Liu, Y Loparco, F Ma, M Ma, P. X Ma, X. Q Mazziotta, M. N Niu, X. Y Peng, W. X Qiao, R Rao, J. N H. Shen, W Shen, Z. Q Su, M Teng, X. J Vagelli, V Vitillo, S Wang, C Wang, H Wang, H. Y Wang, J. Z Wang, L. G Wang, X. L Wang, Y. F Wang, Y. P Wen, S. C Wang, Z. M Wei, D. M Wei, Y. F Wu, J Wu, S. S Wu, X Xi, K Xin, Y. L Xu, H. T Xu, Z. Z Xue, G. F Yang, H. B Yang, P Yang, Z. L Yao, H. J Yuan, Q Zhang, D. L Zhang, J. Y Zhang, J. Z Zhang, P. F Zhang, S. X Zhang, W. Z Zhang, Y Zhang, Y. J Zhang, Y. Q Zhang, Y. P Zhang, Z. Y Zhao, H. Y Zhou, Y Zimmer, S |
description | A direct measurement of cosmic-ray electrons and positrons with unprecedentedly high energy resolution reveals a spectral break at about 0.9 teraelectronvolts, confirming the evidence found by previous indirect measurements.
A break in the cosmic-ray spectrum
The spectrum of cosmic-ray electrons and positrons that arrive at Earth potentially contains information about the sources that accelerated them, and may reveal dark-matter annihilation. The spectrum has previously been measured directly up to around 2 teraelectronvolts (TeV), and indirectly up to around 5 TeV from ground-based Cherenkov arrays, which revealed a possible break in the spectrum. The Dark Matter Particle Explorer (DAMPE) Collaboration reports a direct measurement between 25 gigaelectronvolts and 4.6 TeV, which clearly reveals a spectral break at around 0.9 TeV.
High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes
1
,
2
,
3
,
4
,
5
,
6
,
7
and may enable the observation of phenomena such as dark-matter particle annihilation or decay
8
,
9
,
10
. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments
11
,
12
,
13
,
14
,
15
,
16
, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays
17
,
18
. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements
17
,
18
, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE)
19
with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements
17
,
18
, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs. |
doi_str_mv | 10.1038/nature24475 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1970638448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A517883842</galeid><sourcerecordid>A517883842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-7ca173ac7635b85bd783827b1b457f2085b54419caa363cf2c7eb96635f7b67f3</originalsourceid><addsrcrecordid>eNp10s-P1CAUB3BiNO64evJuiHvRaFdoKdDjZHR1k40musZjQ-nryNpCF6hx_3vp_tAZU8OB8PjwQr55CD2l5JiSQr6xKk4ecsZEeQ-tKBM8Y1yK-2hFSC4zIgt-gB6FcEEIKalgD9FBXlHJKSUr1Lw1HnTELcS0GWex67DCjQf1AxuL43fAEbyCPl17Z3-6PmLtwmB05tUVDuNcn4b52Z0JWNkWjy6Y69Nj9KBTfYAnt_sh-nry7nzzITv79P50sz7LNM_zmAmtqCiUFrwoG1k2rZCFzEVDG1aKLiepVDJGK61UwQvd5VpAU_GkO9Fw0RWH6MVN39G7ywlCrAcTNPS9suCmUNNKEF5IxmSiR__QCzd5m343K05oWZX0r9qqHmpjOxe90nPTep2ClOl_LE8qW1BbsCm13lnoTCrv-ecLXo_mst5FxwsorRZS8otdX-49SCbCr7hVUwj16ZfP-_bV_-36_Nvm46LW3oXgoatHbwblr2pK6nkA650BTPrZbbJTM0D7x95NXAKvb0BIV3YLfif6hX6_Adrg4Uo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976015951</pqid></control><display><type>article</type><title>Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>An, Q ; Asfandiyarov, R ; Bernardini, P ; Bertucci, B ; Cai, M. S ; Chang, J ; Chen, D. Y ; Chen, H. F ; Chen, W ; Cui, M. Y ; Cui, T. S ; DAmone, A ; De Benedittis, A ; Di Santo, M ; Dong, T. K ; Dong, Y. F ; Dong, Z. X ; Droz, D ; Duan, K. K ; Duan, J. L ; Duranti, M ; DUrso, D ; Fan, R. R ; Fang, F ; Feng, C. Q ; Feng, L ; Fusco, P ; Gallo, V ; Gao, M ; Gao, S. S ; Gong, K ; Guo, D. Y ; Guo, J. H ; Huang, G. S ; Huang, Y. Y ; Ionica, M ; Jiang, D ; Jin, X ; Kong, J ; Lei, S. J ; Li, S ; Li, X ; Liang, Y. M ; Liu, H ; Liu, J ; Liu, Y ; Loparco, F ; Ma, M ; Ma, P. X ; Ma, X. Q ; Mazziotta, M. N ; Niu, X. Y ; Peng, W. X ; Qiao, R ; Rao, J. N ; H. Shen, W ; Shen, Z. Q ; Su, M ; Teng, X. J ; Vagelli, V ; Vitillo, S ; Wang, C ; Wang, H ; Wang, H. Y ; Wang, J. Z ; Wang, L. G ; Wang, X. L ; Wang, Y. F ; Wang, Y. P ; Wen, S. C ; Wang, Z. M ; Wei, D. M ; Wei, Y. F ; Wu, J ; Wu, S. S ; Wu, X ; Xi, K ; Xin, Y. L ; Xu, H. T ; Xu, Z. Z ; Xue, G. F ; Yang, H. B ; Yang, P ; Yang, Z. L ; Yao, H. J ; Yuan, Q ; Zhang, D. L ; Zhang, J. Y ; Zhang, J. Z ; Zhang, P. F ; Zhang, S. X ; Zhang, W. Z ; Zhang, Y ; Zhang, Y. J ; Zhang, Y. Q ; Zhang, Y. P ; Zhang, Z. Y ; Zhao, H. Y ; Zhou, Y ; Zimmer, S</creator><creatorcontrib>An, Q ; Asfandiyarov, R ; Bernardini, P ; Bertucci, B ; Cai, M. S ; Chang, J ; Chen, D. Y ; Chen, H. F ; Chen, W ; Cui, M. Y ; Cui, T. S ; DAmone, A ; De Benedittis, A ; Di Santo, M ; Dong, T. K ; Dong, Y. F ; Dong, Z. X ; Droz, D ; Duan, K. K ; Duan, J. L ; Duranti, M ; DUrso, D ; Fan, R. R ; Fang, F ; Feng, C. Q ; Feng, L ; Fusco, P ; Gallo, V ; Gao, M ; Gao, S. S ; Gong, K ; Guo, D. Y ; Guo, J. H ; Huang, G. S ; Huang, Y. Y ; Ionica, M ; Jiang, D ; Jin, X ; Kong, J ; Lei, S. J ; Li, S ; Li, X ; Liang, Y. M ; Liu, H ; Liu, J ; Liu, Y ; Loparco, F ; Ma, M ; Ma, P. X ; Ma, X. Q ; Mazziotta, M. N ; Niu, X. Y ; Peng, W. X ; Qiao, R ; Rao, J. N ; H. Shen, W ; Shen, Z. Q ; Su, M ; Teng, X. J ; Vagelli, V ; Vitillo, S ; Wang, C ; Wang, H ; Wang, H. Y ; Wang, J. Z ; Wang, L. G ; Wang, X. L ; Wang, Y. F ; Wang, Y. P ; Wen, S. C ; Wang, Z. M ; Wei, D. M ; Wei, Y. F ; Wu, J ; Wu, S. S ; Wu, X ; Xi, K ; Xin, Y. L ; Xu, H. T ; Xu, Z. Z ; Xue, G. F ; Yang, H. B ; Yang, P ; Yang, Z. L ; Yao, H. J ; Yuan, Q ; Zhang, D. L ; Zhang, J. Y ; Zhang, J. Z ; Zhang, P. F ; Zhang, S. X ; Zhang, W. Z ; Zhang, Y ; Zhang, Y. J ; Zhang, Y. Q ; Zhang, Y. P ; Zhang, Z. Y ; Zhao, H. Y ; Zhou, Y ; Zimmer, S ; DAMPE Collaboration</creatorcontrib><description>A direct measurement of cosmic-ray electrons and positrons with unprecedentedly high energy resolution reveals a spectral break at about 0.9 teraelectronvolts, confirming the evidence found by previous indirect measurements.
A break in the cosmic-ray spectrum
The spectrum of cosmic-ray electrons and positrons that arrive at Earth potentially contains information about the sources that accelerated them, and may reveal dark-matter annihilation. The spectrum has previously been measured directly up to around 2 teraelectronvolts (TeV), and indirectly up to around 5 TeV from ground-based Cherenkov arrays, which revealed a possible break in the spectrum. The Dark Matter Particle Explorer (DAMPE) Collaboration reports a direct measurement between 25 gigaelectronvolts and 4.6 TeV, which clearly reveals a spectral break at around 0.9 TeV.
High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes
1
,
2
,
3
,
4
,
5
,
6
,
7
and may enable the observation of phenomena such as dark-matter particle annihilation or decay
8
,
9
,
10
. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments
11
,
12
,
13
,
14
,
15
,
16
, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays
17
,
18
. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements
17
,
18
, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE)
19
with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements
17
,
18
, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature24475</identifier><identifier>PMID: 29186110</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/864 ; 639/33/34/866 ; Cerenkov radiation ; Charged particles ; Cosmic ray electrons ; Cosmic rays ; Dark matter ; Electrons ; Energy ; Energy measurement ; Energy resolution ; Humanities and Social Sciences ; letter ; multidisciplinary ; Neural networks ; Observations ; Particle decay ; Positrons ; Principal components analysis ; Protons ; Science ; Sensors ; Space telescopes</subject><ispartof>Nature (London), 2017-12, Vol.552 (7683), p.63-66</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 7, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-7ca173ac7635b85bd783827b1b457f2085b54419caa363cf2c7eb96635f7b67f3</citedby><cites>FETCH-LOGICAL-c622t-7ca173ac7635b85bd783827b1b457f2085b54419caa363cf2c7eb96635f7b67f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature24475$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature24475$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29186110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Q</creatorcontrib><creatorcontrib>Asfandiyarov, R</creatorcontrib><creatorcontrib>Bernardini, P</creatorcontrib><creatorcontrib>Bertucci, B</creatorcontrib><creatorcontrib>Cai, M. S</creatorcontrib><creatorcontrib>Chang, J</creatorcontrib><creatorcontrib>Chen, D. Y</creatorcontrib><creatorcontrib>Chen, H. F</creatorcontrib><creatorcontrib>Chen, W</creatorcontrib><creatorcontrib>Cui, M. Y</creatorcontrib><creatorcontrib>Cui, T. S</creatorcontrib><creatorcontrib>DAmone, A</creatorcontrib><creatorcontrib>De Benedittis, A</creatorcontrib><creatorcontrib>Di Santo, M</creatorcontrib><creatorcontrib>Dong, T. K</creatorcontrib><creatorcontrib>Dong, Y. F</creatorcontrib><creatorcontrib>Dong, Z. X</creatorcontrib><creatorcontrib>Droz, D</creatorcontrib><creatorcontrib>Duan, K. K</creatorcontrib><creatorcontrib>Duan, J. L</creatorcontrib><creatorcontrib>Duranti, M</creatorcontrib><creatorcontrib>DUrso, D</creatorcontrib><creatorcontrib>Fan, R. R</creatorcontrib><creatorcontrib>Fang, F</creatorcontrib><creatorcontrib>Feng, C. Q</creatorcontrib><creatorcontrib>Feng, L</creatorcontrib><creatorcontrib>Fusco, P</creatorcontrib><creatorcontrib>Gallo, V</creatorcontrib><creatorcontrib>Gao, M</creatorcontrib><creatorcontrib>Gao, S. S</creatorcontrib><creatorcontrib>Gong, K</creatorcontrib><creatorcontrib>Guo, D. Y</creatorcontrib><creatorcontrib>Guo, J. H</creatorcontrib><creatorcontrib>Huang, G. S</creatorcontrib><creatorcontrib>Huang, Y. Y</creatorcontrib><creatorcontrib>Ionica, M</creatorcontrib><creatorcontrib>Jiang, D</creatorcontrib><creatorcontrib>Jin, X</creatorcontrib><creatorcontrib>Kong, J</creatorcontrib><creatorcontrib>Lei, S. J</creatorcontrib><creatorcontrib>Li, S</creatorcontrib><creatorcontrib>Li, X</creatorcontrib><creatorcontrib>Liang, Y. M</creatorcontrib><creatorcontrib>Liu, H</creatorcontrib><creatorcontrib>Liu, J</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Loparco, F</creatorcontrib><creatorcontrib>Ma, M</creatorcontrib><creatorcontrib>Ma, P. X</creatorcontrib><creatorcontrib>Ma, X. Q</creatorcontrib><creatorcontrib>Mazziotta, M. N</creatorcontrib><creatorcontrib>Niu, X. Y</creatorcontrib><creatorcontrib>Peng, W. X</creatorcontrib><creatorcontrib>Qiao, R</creatorcontrib><creatorcontrib>Rao, J. N</creatorcontrib><creatorcontrib>H. Shen, W</creatorcontrib><creatorcontrib>Shen, Z. Q</creatorcontrib><creatorcontrib>Su, M</creatorcontrib><creatorcontrib>Teng, X. J</creatorcontrib><creatorcontrib>Vagelli, V</creatorcontrib><creatorcontrib>Vitillo, S</creatorcontrib><creatorcontrib>Wang, C</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Wang, H. Y</creatorcontrib><creatorcontrib>Wang, J. Z</creatorcontrib><creatorcontrib>Wang, L. G</creatorcontrib><creatorcontrib>Wang, X. L</creatorcontrib><creatorcontrib>Wang, Y. F</creatorcontrib><creatorcontrib>Wang, Y. P</creatorcontrib><creatorcontrib>Wen, S. C</creatorcontrib><creatorcontrib>Wang, Z. M</creatorcontrib><creatorcontrib>Wei, D. M</creatorcontrib><creatorcontrib>Wei, Y. F</creatorcontrib><creatorcontrib>Wu, J</creatorcontrib><creatorcontrib>Wu, S. S</creatorcontrib><creatorcontrib>Wu, X</creatorcontrib><creatorcontrib>Xi, K</creatorcontrib><creatorcontrib>Xin, Y. L</creatorcontrib><creatorcontrib>Xu, H. T</creatorcontrib><creatorcontrib>Xu, Z. Z</creatorcontrib><creatorcontrib>Xue, G. F</creatorcontrib><creatorcontrib>Yang, H. B</creatorcontrib><creatorcontrib>Yang, P</creatorcontrib><creatorcontrib>Yang, Z. L</creatorcontrib><creatorcontrib>Yao, H. J</creatorcontrib><creatorcontrib>Yuan, Q</creatorcontrib><creatorcontrib>Zhang, D. L</creatorcontrib><creatorcontrib>Zhang, J. Y</creatorcontrib><creatorcontrib>Zhang, J. Z</creatorcontrib><creatorcontrib>Zhang, P. F</creatorcontrib><creatorcontrib>Zhang, S. X</creatorcontrib><creatorcontrib>Zhang, W. Z</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Zhang, Y. J</creatorcontrib><creatorcontrib>Zhang, Y. Q</creatorcontrib><creatorcontrib>Zhang, Y. P</creatorcontrib><creatorcontrib>Zhang, Z. Y</creatorcontrib><creatorcontrib>Zhao, H. Y</creatorcontrib><creatorcontrib>Zhou, Y</creatorcontrib><creatorcontrib>Zimmer, S</creatorcontrib><creatorcontrib>DAMPE Collaboration</creatorcontrib><title>Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A direct measurement of cosmic-ray electrons and positrons with unprecedentedly high energy resolution reveals a spectral break at about 0.9 teraelectronvolts, confirming the evidence found by previous indirect measurements.
A break in the cosmic-ray spectrum
The spectrum of cosmic-ray electrons and positrons that arrive at Earth potentially contains information about the sources that accelerated them, and may reveal dark-matter annihilation. The spectrum has previously been measured directly up to around 2 teraelectronvolts (TeV), and indirectly up to around 5 TeV from ground-based Cherenkov arrays, which revealed a possible break in the spectrum. The Dark Matter Particle Explorer (DAMPE) Collaboration reports a direct measurement between 25 gigaelectronvolts and 4.6 TeV, which clearly reveals a spectral break at around 0.9 TeV.
High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes
1
,
2
,
3
,
4
,
5
,
6
,
7
and may enable the observation of phenomena such as dark-matter particle annihilation or decay
8
,
9
,
10
. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments
11
,
12
,
13
,
14
,
15
,
16
, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays
17
,
18
. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements
17
,
18
, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE)
19
with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements
17
,
18
, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.</description><subject>639/33/34/864</subject><subject>639/33/34/866</subject><subject>Cerenkov radiation</subject><subject>Charged particles</subject><subject>Cosmic ray electrons</subject><subject>Cosmic rays</subject><subject>Dark matter</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy measurement</subject><subject>Energy resolution</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Observations</subject><subject>Particle decay</subject><subject>Positrons</subject><subject>Principal components analysis</subject><subject>Protons</subject><subject>Science</subject><subject>Sensors</subject><subject>Space telescopes</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s-P1CAUB3BiNO64evJuiHvRaFdoKdDjZHR1k40musZjQ-nryNpCF6hx_3vp_tAZU8OB8PjwQr55CD2l5JiSQr6xKk4ecsZEeQ-tKBM8Y1yK-2hFSC4zIgt-gB6FcEEIKalgD9FBXlHJKSUr1Lw1HnTELcS0GWex67DCjQf1AxuL43fAEbyCPl17Z3-6PmLtwmB05tUVDuNcn4b52Z0JWNkWjy6Y69Nj9KBTfYAnt_sh-nry7nzzITv79P50sz7LNM_zmAmtqCiUFrwoG1k2rZCFzEVDG1aKLiepVDJGK61UwQvd5VpAU_GkO9Fw0RWH6MVN39G7ywlCrAcTNPS9suCmUNNKEF5IxmSiR__QCzd5m343K05oWZX0r9qqHmpjOxe90nPTep2ClOl_LE8qW1BbsCm13lnoTCrv-ecLXo_mst5FxwsorRZS8otdX-49SCbCr7hVUwj16ZfP-_bV_-36_Nvm46LW3oXgoatHbwblr2pK6nkA650BTPrZbbJTM0D7x95NXAKvb0BIV3YLfif6hX6_Adrg4Uo</recordid><startdate>20171207</startdate><enddate>20171207</enddate><creator>An, Q</creator><creator>Asfandiyarov, R</creator><creator>Bernardini, P</creator><creator>Bertucci, B</creator><creator>Cai, M. S</creator><creator>Chang, J</creator><creator>Chen, D. Y</creator><creator>Chen, H. F</creator><creator>Chen, W</creator><creator>Cui, M. Y</creator><creator>Cui, T. S</creator><creator>DAmone, A</creator><creator>De Benedittis, A</creator><creator>Di Santo, M</creator><creator>Dong, T. K</creator><creator>Dong, Y. F</creator><creator>Dong, Z. X</creator><creator>Droz, D</creator><creator>Duan, K. K</creator><creator>Duan, J. L</creator><creator>Duranti, M</creator><creator>DUrso, D</creator><creator>Fan, R. R</creator><creator>Fang, F</creator><creator>Feng, C. Q</creator><creator>Feng, L</creator><creator>Fusco, P</creator><creator>Gallo, V</creator><creator>Gao, M</creator><creator>Gao, S. S</creator><creator>Gong, K</creator><creator>Guo, D. Y</creator><creator>Guo, J. H</creator><creator>Huang, G. S</creator><creator>Huang, Y. Y</creator><creator>Ionica, M</creator><creator>Jiang, D</creator><creator>Jin, X</creator><creator>Kong, J</creator><creator>Lei, S. J</creator><creator>Li, S</creator><creator>Li, X</creator><creator>Liang, Y. M</creator><creator>Liu, H</creator><creator>Liu, J</creator><creator>Liu, Y</creator><creator>Loparco, F</creator><creator>Ma, M</creator><creator>Ma, P. X</creator><creator>Ma, X. Q</creator><creator>Mazziotta, M. N</creator><creator>Niu, X. Y</creator><creator>Peng, W. X</creator><creator>Qiao, R</creator><creator>Rao, J. N</creator><creator>H. Shen, W</creator><creator>Shen, Z. Q</creator><creator>Su, M</creator><creator>Teng, X. J</creator><creator>Vagelli, V</creator><creator>Vitillo, S</creator><creator>Wang, C</creator><creator>Wang, H</creator><creator>Wang, H. Y</creator><creator>Wang, J. Z</creator><creator>Wang, L. G</creator><creator>Wang, X. L</creator><creator>Wang, Y. F</creator><creator>Wang, Y. P</creator><creator>Wen, S. C</creator><creator>Wang, Z. M</creator><creator>Wei, D. M</creator><creator>Wei, Y. F</creator><creator>Wu, J</creator><creator>Wu, S. S</creator><creator>Wu, X</creator><creator>Xi, K</creator><creator>Xin, Y. L</creator><creator>Xu, H. T</creator><creator>Xu, Z. Z</creator><creator>Xue, G. F</creator><creator>Yang, H. B</creator><creator>Yang, P</creator><creator>Yang, Z. L</creator><creator>Yao, H. J</creator><creator>Yuan, Q</creator><creator>Zhang, D. L</creator><creator>Zhang, J. Y</creator><creator>Zhang, J. Z</creator><creator>Zhang, P. F</creator><creator>Zhang, S. X</creator><creator>Zhang, W. Z</creator><creator>Zhang, Y</creator><creator>Zhang, Y. J</creator><creator>Zhang, Y. Q</creator><creator>Zhang, Y. P</creator><creator>Zhang, Z. Y</creator><creator>Zhao, H. Y</creator><creator>Zhou, Y</creator><creator>Zimmer, S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20171207</creationdate><title>Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons</title><author>An, Q ; Asfandiyarov, R ; Bernardini, P ; Bertucci, B ; Cai, M. S ; Chang, J ; Chen, D. Y ; Chen, H. F ; Chen, W ; Cui, M. Y ; Cui, T. S ; DAmone, A ; De Benedittis, A ; Di Santo, M ; Dong, T. K ; Dong, Y. F ; Dong, Z. X ; Droz, D ; Duan, K. K ; Duan, J. L ; Duranti, M ; DUrso, D ; Fan, R. R ; Fang, F ; Feng, C. Q ; Feng, L ; Fusco, P ; Gallo, V ; Gao, M ; Gao, S. S ; Gong, K ; Guo, D. Y ; Guo, J. H ; Huang, G. S ; Huang, Y. Y ; Ionica, M ; Jiang, D ; Jin, X ; Kong, J ; Lei, S. J ; Li, S ; Li, X ; Liang, Y. M ; Liu, H ; Liu, J ; Liu, Y ; Loparco, F ; Ma, M ; Ma, P. X ; Ma, X. Q ; Mazziotta, M. N ; Niu, X. Y ; Peng, W. X ; Qiao, R ; Rao, J. N ; H. Shen, W ; Shen, Z. Q ; Su, M ; Teng, X. J ; Vagelli, V ; Vitillo, S ; Wang, C ; Wang, H ; Wang, H. Y ; Wang, J. Z ; Wang, L. G ; Wang, X. L ; Wang, Y. F ; Wang, Y. P ; Wen, S. C ; Wang, Z. M ; Wei, D. M ; Wei, Y. F ; Wu, J ; Wu, S. S ; Wu, X ; Xi, K ; Xin, Y. L ; Xu, H. T ; Xu, Z. Z ; Xue, G. F ; Yang, H. B ; Yang, P ; Yang, Z. L ; Yao, H. J ; Yuan, Q ; Zhang, D. L ; Zhang, J. Y ; Zhang, J. Z ; Zhang, P. F ; Zhang, S. X ; Zhang, W. Z ; Zhang, Y ; Zhang, Y. J ; Zhang, Y. Q ; Zhang, Y. P ; Zhang, Z. Y ; Zhao, H. Y ; Zhou, Y ; Zimmer, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-7ca173ac7635b85bd783827b1b457f2085b54419caa363cf2c7eb96635f7b67f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/33/34/864</topic><topic>639/33/34/866</topic><topic>Cerenkov radiation</topic><topic>Charged particles</topic><topic>Cosmic ray electrons</topic><topic>Cosmic rays</topic><topic>Dark matter</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy measurement</topic><topic>Energy resolution</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Observations</topic><topic>Particle decay</topic><topic>Positrons</topic><topic>Principal components analysis</topic><topic>Protons</topic><topic>Science</topic><topic>Sensors</topic><topic>Space telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Q</creatorcontrib><creatorcontrib>Asfandiyarov, R</creatorcontrib><creatorcontrib>Bernardini, P</creatorcontrib><creatorcontrib>Bertucci, B</creatorcontrib><creatorcontrib>Cai, M. S</creatorcontrib><creatorcontrib>Chang, J</creatorcontrib><creatorcontrib>Chen, D. Y</creatorcontrib><creatorcontrib>Chen, H. F</creatorcontrib><creatorcontrib>Chen, W</creatorcontrib><creatorcontrib>Cui, M. Y</creatorcontrib><creatorcontrib>Cui, T. S</creatorcontrib><creatorcontrib>DAmone, A</creatorcontrib><creatorcontrib>De Benedittis, A</creatorcontrib><creatorcontrib>Di Santo, M</creatorcontrib><creatorcontrib>Dong, T. K</creatorcontrib><creatorcontrib>Dong, Y. F</creatorcontrib><creatorcontrib>Dong, Z. X</creatorcontrib><creatorcontrib>Droz, D</creatorcontrib><creatorcontrib>Duan, K. K</creatorcontrib><creatorcontrib>Duan, J. L</creatorcontrib><creatorcontrib>Duranti, M</creatorcontrib><creatorcontrib>DUrso, D</creatorcontrib><creatorcontrib>Fan, R. R</creatorcontrib><creatorcontrib>Fang, F</creatorcontrib><creatorcontrib>Feng, C. Q</creatorcontrib><creatorcontrib>Feng, L</creatorcontrib><creatorcontrib>Fusco, P</creatorcontrib><creatorcontrib>Gallo, V</creatorcontrib><creatorcontrib>Gao, M</creatorcontrib><creatorcontrib>Gao, S. S</creatorcontrib><creatorcontrib>Gong, K</creatorcontrib><creatorcontrib>Guo, D. Y</creatorcontrib><creatorcontrib>Guo, J. H</creatorcontrib><creatorcontrib>Huang, G. S</creatorcontrib><creatorcontrib>Huang, Y. Y</creatorcontrib><creatorcontrib>Ionica, M</creatorcontrib><creatorcontrib>Jiang, D</creatorcontrib><creatorcontrib>Jin, X</creatorcontrib><creatorcontrib>Kong, J</creatorcontrib><creatorcontrib>Lei, S. J</creatorcontrib><creatorcontrib>Li, S</creatorcontrib><creatorcontrib>Li, X</creatorcontrib><creatorcontrib>Liang, Y. M</creatorcontrib><creatorcontrib>Liu, H</creatorcontrib><creatorcontrib>Liu, J</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Loparco, F</creatorcontrib><creatorcontrib>Ma, M</creatorcontrib><creatorcontrib>Ma, P. X</creatorcontrib><creatorcontrib>Ma, X. Q</creatorcontrib><creatorcontrib>Mazziotta, M. N</creatorcontrib><creatorcontrib>Niu, X. Y</creatorcontrib><creatorcontrib>Peng, W. X</creatorcontrib><creatorcontrib>Qiao, R</creatorcontrib><creatorcontrib>Rao, J. N</creatorcontrib><creatorcontrib>H. Shen, W</creatorcontrib><creatorcontrib>Shen, Z. Q</creatorcontrib><creatorcontrib>Su, M</creatorcontrib><creatorcontrib>Teng, X. J</creatorcontrib><creatorcontrib>Vagelli, V</creatorcontrib><creatorcontrib>Vitillo, S</creatorcontrib><creatorcontrib>Wang, C</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Wang, H. Y</creatorcontrib><creatorcontrib>Wang, J. Z</creatorcontrib><creatorcontrib>Wang, L. G</creatorcontrib><creatorcontrib>Wang, X. L</creatorcontrib><creatorcontrib>Wang, Y. F</creatorcontrib><creatorcontrib>Wang, Y. P</creatorcontrib><creatorcontrib>Wen, S. C</creatorcontrib><creatorcontrib>Wang, Z. M</creatorcontrib><creatorcontrib>Wei, D. M</creatorcontrib><creatorcontrib>Wei, Y. F</creatorcontrib><creatorcontrib>Wu, J</creatorcontrib><creatorcontrib>Wu, S. S</creatorcontrib><creatorcontrib>Wu, X</creatorcontrib><creatorcontrib>Xi, K</creatorcontrib><creatorcontrib>Xin, Y. L</creatorcontrib><creatorcontrib>Xu, H. T</creatorcontrib><creatorcontrib>Xu, Z. Z</creatorcontrib><creatorcontrib>Xue, G. F</creatorcontrib><creatorcontrib>Yang, H. B</creatorcontrib><creatorcontrib>Yang, P</creatorcontrib><creatorcontrib>Yang, Z. L</creatorcontrib><creatorcontrib>Yao, H. J</creatorcontrib><creatorcontrib>Yuan, Q</creatorcontrib><creatorcontrib>Zhang, D. L</creatorcontrib><creatorcontrib>Zhang, J. Y</creatorcontrib><creatorcontrib>Zhang, J. Z</creatorcontrib><creatorcontrib>Zhang, P. F</creatorcontrib><creatorcontrib>Zhang, S. X</creatorcontrib><creatorcontrib>Zhang, W. Z</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Zhang, Y. J</creatorcontrib><creatorcontrib>Zhang, Y. Q</creatorcontrib><creatorcontrib>Zhang, Y. P</creatorcontrib><creatorcontrib>Zhang, Z. Y</creatorcontrib><creatorcontrib>Zhao, H. Y</creatorcontrib><creatorcontrib>Zhou, Y</creatorcontrib><creatorcontrib>Zimmer, S</creatorcontrib><creatorcontrib>DAMPE Collaboration</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Q</au><au>Asfandiyarov, R</au><au>Bernardini, P</au><au>Bertucci, B</au><au>Cai, M. S</au><au>Chang, J</au><au>Chen, D. Y</au><au>Chen, H. F</au><au>Chen, W</au><au>Cui, M. Y</au><au>Cui, T. S</au><au>DAmone, A</au><au>De Benedittis, A</au><au>Di Santo, M</au><au>Dong, T. K</au><au>Dong, Y. F</au><au>Dong, Z. X</au><au>Droz, D</au><au>Duan, K. K</au><au>Duan, J. L</au><au>Duranti, M</au><au>DUrso, D</au><au>Fan, R. R</au><au>Fang, F</au><au>Feng, C. Q</au><au>Feng, L</au><au>Fusco, P</au><au>Gallo, V</au><au>Gao, M</au><au>Gao, S. S</au><au>Gong, K</au><au>Guo, D. Y</au><au>Guo, J. H</au><au>Huang, G. S</au><au>Huang, Y. Y</au><au>Ionica, M</au><au>Jiang, D</au><au>Jin, X</au><au>Kong, J</au><au>Lei, S. J</au><au>Li, S</au><au>Li, X</au><au>Liang, Y. M</au><au>Liu, H</au><au>Liu, J</au><au>Liu, Y</au><au>Loparco, F</au><au>Ma, M</au><au>Ma, P. X</au><au>Ma, X. Q</au><au>Mazziotta, M. N</au><au>Niu, X. Y</au><au>Peng, W. X</au><au>Qiao, R</au><au>Rao, J. N</au><au>H. Shen, W</au><au>Shen, Z. Q</au><au>Su, M</au><au>Teng, X. J</au><au>Vagelli, V</au><au>Vitillo, S</au><au>Wang, C</au><au>Wang, H</au><au>Wang, H. Y</au><au>Wang, J. Z</au><au>Wang, L. G</au><au>Wang, X. L</au><au>Wang, Y. F</au><au>Wang, Y. P</au><au>Wen, S. C</au><au>Wang, Z. M</au><au>Wei, D. M</au><au>Wei, Y. F</au><au>Wu, J</au><au>Wu, S. S</au><au>Wu, X</au><au>Xi, K</au><au>Xin, Y. L</au><au>Xu, H. T</au><au>Xu, Z. Z</au><au>Xue, G. F</au><au>Yang, H. B</au><au>Yang, P</au><au>Yang, Z. L</au><au>Yao, H. J</au><au>Yuan, Q</au><au>Zhang, D. L</au><au>Zhang, J. Y</au><au>Zhang, J. Z</au><au>Zhang, P. F</au><au>Zhang, S. X</au><au>Zhang, W. Z</au><au>Zhang, Y</au><au>Zhang, Y. J</au><au>Zhang, Y. Q</au><au>Zhang, Y. P</au><au>Zhang, Z. Y</au><au>Zhao, H. Y</au><au>Zhou, Y</au><au>Zimmer, S</au><aucorp>DAMPE Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-12-07</date><risdate>2017</risdate><volume>552</volume><issue>7683</issue><spage>63</spage><epage>66</epage><pages>63-66</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A direct measurement of cosmic-ray electrons and positrons with unprecedentedly high energy resolution reveals a spectral break at about 0.9 teraelectronvolts, confirming the evidence found by previous indirect measurements.
A break in the cosmic-ray spectrum
The spectrum of cosmic-ray electrons and positrons that arrive at Earth potentially contains information about the sources that accelerated them, and may reveal dark-matter annihilation. The spectrum has previously been measured directly up to around 2 teraelectronvolts (TeV), and indirectly up to around 5 TeV from ground-based Cherenkov arrays, which revealed a possible break in the spectrum. The Dark Matter Particle Explorer (DAMPE) Collaboration reports a direct measurement between 25 gigaelectronvolts and 4.6 TeV, which clearly reveals a spectral break at around 0.9 TeV.
High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes
1
,
2
,
3
,
4
,
5
,
6
,
7
and may enable the observation of phenomena such as dark-matter particle annihilation or decay
8
,
9
,
10
. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments
11
,
12
,
13
,
14
,
15
,
16
, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays
17
,
18
. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements
17
,
18
, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE)
19
with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements
17
,
18
, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29186110</pmid><doi>10.1038/nature24475</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-12, Vol.552 (7683), p.63-66 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1970638448 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/33/34/864 639/33/34/866 Cerenkov radiation Charged particles Cosmic ray electrons Cosmic rays Dark matter Electrons Energy Energy measurement Energy resolution Humanities and Social Sciences letter multidisciplinary Neural networks Observations Particle decay Positrons Principal components analysis Protons Science Sensors Space telescopes |
title | Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20detection%20of%20a%20break%20in%20the%20teraelectronvolt%20cosmic-ray%20spectrum%20of%20electrons%20and%20positrons&rft.jtitle=Nature%20(London)&rft.au=An,%20Q&rft.aucorp=DAMPE%20Collaboration&rft.date=2017-12-07&rft.volume=552&rft.issue=7683&rft.spage=63&rft.epage=66&rft.pages=63-66&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature24475&rft_dat=%3Cgale_proqu%3EA517883842%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976015951&rft_id=info:pmid/29186110&rft_galeid=A517883842&rfr_iscdi=true |