Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals

Recent experiments have triggered a debate about the ability of protons to transfer easily through individual layers of graphene and hexagonal boron nitride (h-BN). However, state-of-the-art computer calculations have shown that the barriers to proton penetration can, at >3 eV, be excessively hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2017-12, Vol.8 (24), p.6009-6014
Hauptverfasser: Feng, Yexin, Chen, Ji, Fang, Wei, Wang, En-Ge, Michaelides, Angelos, Li, Xin-Zheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6014
container_issue 24
container_start_page 6009
container_title The journal of physical chemistry letters
container_volume 8
creator Feng, Yexin
Chen, Ji
Fang, Wei
Wang, En-Ge
Michaelides, Angelos
Li, Xin-Zheng
description Recent experiments have triggered a debate about the ability of protons to transfer easily through individual layers of graphene and hexagonal boron nitride (h-BN). However, state-of-the-art computer calculations have shown that the barriers to proton penetration can, at >3 eV, be excessively high. Despite considerable interest the origin of this apparent anomaly between experiment and simulation remains unclear. We offer a new perspective on this debate and show on the basis of first-principles calculations that the barrier for proton penetration is significantly reduced, to
doi_str_mv 10.1021/acs.jpclett.7b02820
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1970632117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970632117</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-98dac521b18deb7e7987150f21948ff6b78f1a8e31542fa3750aeda3d16bd1033</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EoqXwBUgoRy5pvU4TO0dUKEWqBIdwjpxk3aZK4mI7Qvl7XFoQJ067Gs3Mrh4ht0CnQBnMZGmnu33ZoHNTXlAmGD0jY0jnIuQg4vM_-4hcWbujNEmp4JdkxFIv8piNSbYaKqM32ElX6y5YyrJuaicd2uDNaOelzMjOKjSB2xrdb7ZB9qnDx7rFzvqEbIKV7nAodVsECzNYJxt7TS6UH3hzmhPyvnzKFqtw_fr8snhYh3IeJy5MRSXLmEEBosKCI08Fh5gqdvhbqaTgQoEUGEE8Z0pGPKYSKxlVkBQV0CiakPtj797ojx6ty9valtg0skPd2xxSTpOIAXBvjY7W0mhrDap8b-pWmiEHmh9w5h5nfsKZn3D61N3pQF-0WP1mfvh5w-xo-E7r3ngg9t_KL87DhUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970632117</pqid></control><display><type>article</type><title>Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals</title><source>ACS Publications</source><creator>Feng, Yexin ; Chen, Ji ; Fang, Wei ; Wang, En-Ge ; Michaelides, Angelos ; Li, Xin-Zheng</creator><creatorcontrib>Feng, Yexin ; Chen, Ji ; Fang, Wei ; Wang, En-Ge ; Michaelides, Angelos ; Li, Xin-Zheng</creatorcontrib><description>Recent experiments have triggered a debate about the ability of protons to transfer easily through individual layers of graphene and hexagonal boron nitride (h-BN). However, state-of-the-art computer calculations have shown that the barriers to proton penetration can, at &gt;3 eV, be excessively high. Despite considerable interest the origin of this apparent anomaly between experiment and simulation remains unclear. We offer a new perspective on this debate and show on the basis of first-principles calculations that the barrier for proton penetration is significantly reduced, to &lt;1 eV, upon hydrogenation, even in the absence of pinholes in the lattice. Although hydrogenation has not been offered as an explanation before, analysis reveals that the barrier is reduced because hydrogenation destabilizes the initial state (a deep-lying chemisorption state) and expands the honeycomb lattice through which the protons penetrate. This study offers a rationalization of the fast proton transfer observed in experiments and highlights the ability of proton transport through single-layer materials in hydrogen-rich solutions.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.7b02820</identifier><identifier>PMID: 29185752</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2017-12, Vol.8 (24), p.6009-6014</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-98dac521b18deb7e7987150f21948ff6b78f1a8e31542fa3750aeda3d16bd1033</citedby><cites>FETCH-LOGICAL-a456t-98dac521b18deb7e7987150f21948ff6b78f1a8e31542fa3750aeda3d16bd1033</cites><orcidid>0000-0002-9169-169X ; 0000-0001-5925-8645 ; 0000-0003-0316-4257 ; 0000-0003-1603-1963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.7b02820$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.7b02820$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29185752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Yexin</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>Wang, En-Ge</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><creatorcontrib>Li, Xin-Zheng</creatorcontrib><title>Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Recent experiments have triggered a debate about the ability of protons to transfer easily through individual layers of graphene and hexagonal boron nitride (h-BN). However, state-of-the-art computer calculations have shown that the barriers to proton penetration can, at &gt;3 eV, be excessively high. Despite considerable interest the origin of this apparent anomaly between experiment and simulation remains unclear. We offer a new perspective on this debate and show on the basis of first-principles calculations that the barrier for proton penetration is significantly reduced, to &lt;1 eV, upon hydrogenation, even in the absence of pinholes in the lattice. Although hydrogenation has not been offered as an explanation before, analysis reveals that the barrier is reduced because hydrogenation destabilizes the initial state (a deep-lying chemisorption state) and expands the honeycomb lattice through which the protons penetrate. This study offers a rationalization of the fast proton transfer observed in experiments and highlights the ability of proton transport through single-layer materials in hydrogen-rich solutions.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EoqXwBUgoRy5pvU4TO0dUKEWqBIdwjpxk3aZK4mI7Qvl7XFoQJ067Gs3Mrh4ht0CnQBnMZGmnu33ZoHNTXlAmGD0jY0jnIuQg4vM_-4hcWbujNEmp4JdkxFIv8piNSbYaKqM32ElX6y5YyrJuaicd2uDNaOelzMjOKjSB2xrdb7ZB9qnDx7rFzvqEbIKV7nAodVsECzNYJxt7TS6UH3hzmhPyvnzKFqtw_fr8snhYh3IeJy5MRSXLmEEBosKCI08Fh5gqdvhbqaTgQoEUGEE8Z0pGPKYSKxlVkBQV0CiakPtj797ojx6ty9valtg0skPd2xxSTpOIAXBvjY7W0mhrDap8b-pWmiEHmh9w5h5nfsKZn3D61N3pQF-0WP1mfvh5w-xo-E7r3ngg9t_KL87DhUY</recordid><startdate>20171221</startdate><enddate>20171221</enddate><creator>Feng, Yexin</creator><creator>Chen, Ji</creator><creator>Fang, Wei</creator><creator>Wang, En-Ge</creator><creator>Michaelides, Angelos</creator><creator>Li, Xin-Zheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000-0001-5925-8645</orcidid><orcidid>https://orcid.org/0000-0003-0316-4257</orcidid><orcidid>https://orcid.org/0000-0003-1603-1963</orcidid></search><sort><creationdate>20171221</creationdate><title>Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals</title><author>Feng, Yexin ; Chen, Ji ; Fang, Wei ; Wang, En-Ge ; Michaelides, Angelos ; Li, Xin-Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-98dac521b18deb7e7987150f21948ff6b78f1a8e31542fa3750aeda3d16bd1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yexin</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>Wang, En-Ge</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><creatorcontrib>Li, Xin-Zheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yexin</au><au>Chen, Ji</au><au>Fang, Wei</au><au>Wang, En-Ge</au><au>Michaelides, Angelos</au><au>Li, Xin-Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2017-12-21</date><risdate>2017</risdate><volume>8</volume><issue>24</issue><spage>6009</spage><epage>6014</epage><pages>6009-6014</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Recent experiments have triggered a debate about the ability of protons to transfer easily through individual layers of graphene and hexagonal boron nitride (h-BN). However, state-of-the-art computer calculations have shown that the barriers to proton penetration can, at &gt;3 eV, be excessively high. Despite considerable interest the origin of this apparent anomaly between experiment and simulation remains unclear. We offer a new perspective on this debate and show on the basis of first-principles calculations that the barrier for proton penetration is significantly reduced, to &lt;1 eV, upon hydrogenation, even in the absence of pinholes in the lattice. Although hydrogenation has not been offered as an explanation before, analysis reveals that the barrier is reduced because hydrogenation destabilizes the initial state (a deep-lying chemisorption state) and expands the honeycomb lattice through which the protons penetrate. This study offers a rationalization of the fast proton transfer observed in experiments and highlights the ability of proton transport through single-layer materials in hydrogen-rich solutions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29185752</pmid><doi>10.1021/acs.jpclett.7b02820</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000-0001-5925-8645</orcidid><orcidid>https://orcid.org/0000-0003-0316-4257</orcidid><orcidid>https://orcid.org/0000-0003-1603-1963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2017-12, Vol.8 (24), p.6009-6014
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1970632117
source ACS Publications
title Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenation%20Facilitates%20Proton%20Transfer%20through%20Two-Dimensional%20Honeycomb%20Crystals&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Feng,%20Yexin&rft.date=2017-12-21&rft.volume=8&rft.issue=24&rft.spage=6009&rft.epage=6014&rft.pages=6009-6014&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.7b02820&rft_dat=%3Cproquest_cross%3E1970632117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970632117&rft_id=info:pmid/29185752&rfr_iscdi=true