Defining and Using Preoperative Predictors of Diabetic Remission Following Bariatric Surgery

Background: Diabetes remission is defined as the return of glycemic control in the absence of medication or insulin use after bariatric surgery. We sought to identify and assess the clinical utility of a predictive model for remission of type 2 diabetes mellitus in a population seeking bariatric sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JPEN. Journal of parenteral and enteral nutrition 2018-03, Vol.42 (3), p.573-580
Hauptverfasser: Stallard, Ryan, Sahai, Vic, Drover, John W., Chun, Shannon, Keresztes, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 3
container_start_page 573
container_title JPEN. Journal of parenteral and enteral nutrition
container_volume 42
creator Stallard, Ryan
Sahai, Vic
Drover, John W.
Chun, Shannon
Keresztes, Christian
description Background: Diabetes remission is defined as the return of glycemic control in the absence of medication or insulin use after bariatric surgery. We sought to identify and assess the clinical utility of a predictive model for remission of type 2 diabetes mellitus in a population seeking bariatric surgery. Method: A retrospective cohort design was applied to presurgical data on patients referred for Roux‐en‐Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG). The model developed from logistic regression was compared with a published model through receiver operating characteristic analyses. Results: At 12 months postoperatively, 59.7% of the cohort was remitted, with no differences between RYGB and VSG. Logistic regression analyses yielded a model in which 4 preoperative variables reliably predicted remission. A Hosmer‐Lemeshow goodness‐of‐fit test result of 0.204 indicated good fit of the developed prediction model to our outcome data. The predictive accuracy of this prediction model was compared with a published model, and an associated variation with diabetes years was substituted for age in our patient population. Our model was the most accurate. Conclusions: Using these predictors, healthcare providers may be able to better counsel patients who are living with diabetes and considering bariatric surgery on the likelihood of achieving remission from the intervention. This refined prediction model requires further testing in a larger sample to evaluate its external validity.
doi_str_mv 10.1177/0148607117697934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1970630708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970630708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3466-b587b3138867aa7141384cc02b03aa0677b53e3e67b66132ccb3c0f3cb124a853</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRCIlsLOhDKyBK5j105G6IOHKqiAbkiR7d5URmlc7JSqf0-iFgYWpnuuzkNHh5BzCleUSnkNlKcCZINFJjPGD0iXZpzGCef8kHRbOm75DjkJ4QMAmAA4Jp0ko6kELrvkfYiFrWy1iFQ1j2ahRVOPboVe1fYL22duTe18iFwRDa3SWFsTveDShmBdFY1dWbpN67tV3qraN-zr2i_Qb0_JUaHKgGf72yOz8ehtcB9Pnu8eBjeT2DAuRKz7qdSMsjQVUilJeQO5MZBoYEqBkFL3GTIUUgtBWWKMZgYKZjRNuEr7rEcud7kr7z7XGOq8KWewLFWFbh1ymkkQDCSkjRR2UuNdCB6LfOXtUvltTiFvN83_btpYLvbpa73E-a_hZ8RGIHaCjS1x-29g_jgdPVHaNPoGwbyANw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970630708</pqid></control><display><type>article</type><title>Defining and Using Preoperative Predictors of Diabetic Remission Following Bariatric Surgery</title><source>Wiley Journals</source><creator>Stallard, Ryan ; Sahai, Vic ; Drover, John W. ; Chun, Shannon ; Keresztes, Christian</creator><creatorcontrib>Stallard, Ryan ; Sahai, Vic ; Drover, John W. ; Chun, Shannon ; Keresztes, Christian</creatorcontrib><description>Background: Diabetes remission is defined as the return of glycemic control in the absence of medication or insulin use after bariatric surgery. We sought to identify and assess the clinical utility of a predictive model for remission of type 2 diabetes mellitus in a population seeking bariatric surgery. Method: A retrospective cohort design was applied to presurgical data on patients referred for Roux‐en‐Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG). The model developed from logistic regression was compared with a published model through receiver operating characteristic analyses. Results: At 12 months postoperatively, 59.7% of the cohort was remitted, with no differences between RYGB and VSG. Logistic regression analyses yielded a model in which 4 preoperative variables reliably predicted remission. A Hosmer‐Lemeshow goodness‐of‐fit test result of 0.204 indicated good fit of the developed prediction model to our outcome data. The predictive accuracy of this prediction model was compared with a published model, and an associated variation with diabetes years was substituted for age in our patient population. Our model was the most accurate. Conclusions: Using these predictors, healthcare providers may be able to better counsel patients who are living with diabetes and considering bariatric surgery on the likelihood of achieving remission from the intervention. This refined prediction model requires further testing in a larger sample to evaluate its external validity.</description><identifier>ISSN: 0148-6071</identifier><identifier>EISSN: 1941-2444</identifier><identifier>DOI: 10.1177/0148607117697934</identifier><identifier>PMID: 29187047</identifier><language>eng</language><publisher>United States</publisher><subject>bariatric medicine ; bariatric surgery ; diabetes ; diabetic remission ; statistical modeling</subject><ispartof>JPEN. Journal of parenteral and enteral nutrition, 2018-03, Vol.42 (3), p.573-580</ispartof><rights>2017 American Society for Parenteral and Enteral Nutrition</rights><rights>2017 American Society for Parenteral and Enteral Nutrition.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3466-b587b3138867aa7141384cc02b03aa0677b53e3e67b66132ccb3c0f3cb124a853</citedby><cites>FETCH-LOGICAL-c3466-b587b3138867aa7141384cc02b03aa0677b53e3e67b66132ccb3c0f3cb124a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1177%2F0148607117697934$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1177%2F0148607117697934$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29187047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stallard, Ryan</creatorcontrib><creatorcontrib>Sahai, Vic</creatorcontrib><creatorcontrib>Drover, John W.</creatorcontrib><creatorcontrib>Chun, Shannon</creatorcontrib><creatorcontrib>Keresztes, Christian</creatorcontrib><title>Defining and Using Preoperative Predictors of Diabetic Remission Following Bariatric Surgery</title><title>JPEN. Journal of parenteral and enteral nutrition</title><addtitle>JPEN J Parenter Enteral Nutr</addtitle><description>Background: Diabetes remission is defined as the return of glycemic control in the absence of medication or insulin use after bariatric surgery. We sought to identify and assess the clinical utility of a predictive model for remission of type 2 diabetes mellitus in a population seeking bariatric surgery. Method: A retrospective cohort design was applied to presurgical data on patients referred for Roux‐en‐Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG). The model developed from logistic regression was compared with a published model through receiver operating characteristic analyses. Results: At 12 months postoperatively, 59.7% of the cohort was remitted, with no differences between RYGB and VSG. Logistic regression analyses yielded a model in which 4 preoperative variables reliably predicted remission. A Hosmer‐Lemeshow goodness‐of‐fit test result of 0.204 indicated good fit of the developed prediction model to our outcome data. The predictive accuracy of this prediction model was compared with a published model, and an associated variation with diabetes years was substituted for age in our patient population. Our model was the most accurate. Conclusions: Using these predictors, healthcare providers may be able to better counsel patients who are living with diabetes and considering bariatric surgery on the likelihood of achieving remission from the intervention. This refined prediction model requires further testing in a larger sample to evaluate its external validity.</description><subject>bariatric medicine</subject><subject>bariatric surgery</subject><subject>diabetes</subject><subject>diabetic remission</subject><subject>statistical modeling</subject><issn>0148-6071</issn><issn>1941-2444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRCIlsLOhDKyBK5j105G6IOHKqiAbkiR7d5URmlc7JSqf0-iFgYWpnuuzkNHh5BzCleUSnkNlKcCZINFJjPGD0iXZpzGCef8kHRbOm75DjkJ4QMAmAA4Jp0ko6kELrvkfYiFrWy1iFQ1j2ahRVOPboVe1fYL22duTe18iFwRDa3SWFsTveDShmBdFY1dWbpN67tV3qraN-zr2i_Qb0_JUaHKgGf72yOz8ehtcB9Pnu8eBjeT2DAuRKz7qdSMsjQVUilJeQO5MZBoYEqBkFL3GTIUUgtBWWKMZgYKZjRNuEr7rEcud7kr7z7XGOq8KWewLFWFbh1ymkkQDCSkjRR2UuNdCB6LfOXtUvltTiFvN83_btpYLvbpa73E-a_hZ8RGIHaCjS1x-29g_jgdPVHaNPoGwbyANw</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Stallard, Ryan</creator><creator>Sahai, Vic</creator><creator>Drover, John W.</creator><creator>Chun, Shannon</creator><creator>Keresztes, Christian</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Defining and Using Preoperative Predictors of Diabetic Remission Following Bariatric Surgery</title><author>Stallard, Ryan ; Sahai, Vic ; Drover, John W. ; Chun, Shannon ; Keresztes, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3466-b587b3138867aa7141384cc02b03aa0677b53e3e67b66132ccb3c0f3cb124a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bariatric medicine</topic><topic>bariatric surgery</topic><topic>diabetes</topic><topic>diabetic remission</topic><topic>statistical modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stallard, Ryan</creatorcontrib><creatorcontrib>Sahai, Vic</creatorcontrib><creatorcontrib>Drover, John W.</creatorcontrib><creatorcontrib>Chun, Shannon</creatorcontrib><creatorcontrib>Keresztes, Christian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JPEN. Journal of parenteral and enteral nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stallard, Ryan</au><au>Sahai, Vic</au><au>Drover, John W.</au><au>Chun, Shannon</au><au>Keresztes, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining and Using Preoperative Predictors of Diabetic Remission Following Bariatric Surgery</atitle><jtitle>JPEN. Journal of parenteral and enteral nutrition</jtitle><addtitle>JPEN J Parenter Enteral Nutr</addtitle><date>2018-03</date><risdate>2018</risdate><volume>42</volume><issue>3</issue><spage>573</spage><epage>580</epage><pages>573-580</pages><issn>0148-6071</issn><eissn>1941-2444</eissn><abstract>Background: Diabetes remission is defined as the return of glycemic control in the absence of medication or insulin use after bariatric surgery. We sought to identify and assess the clinical utility of a predictive model for remission of type 2 diabetes mellitus in a population seeking bariatric surgery. Method: A retrospective cohort design was applied to presurgical data on patients referred for Roux‐en‐Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG). The model developed from logistic regression was compared with a published model through receiver operating characteristic analyses. Results: At 12 months postoperatively, 59.7% of the cohort was remitted, with no differences between RYGB and VSG. Logistic regression analyses yielded a model in which 4 preoperative variables reliably predicted remission. A Hosmer‐Lemeshow goodness‐of‐fit test result of 0.204 indicated good fit of the developed prediction model to our outcome data. The predictive accuracy of this prediction model was compared with a published model, and an associated variation with diabetes years was substituted for age in our patient population. Our model was the most accurate. Conclusions: Using these predictors, healthcare providers may be able to better counsel patients who are living with diabetes and considering bariatric surgery on the likelihood of achieving remission from the intervention. This refined prediction model requires further testing in a larger sample to evaluate its external validity.</abstract><cop>United States</cop><pmid>29187047</pmid><doi>10.1177/0148607117697934</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-6071
ispartof JPEN. Journal of parenteral and enteral nutrition, 2018-03, Vol.42 (3), p.573-580
issn 0148-6071
1941-2444
language eng
recordid cdi_proquest_miscellaneous_1970630708
source Wiley Journals
subjects bariatric medicine
bariatric surgery
diabetes
diabetic remission
statistical modeling
title Defining and Using Preoperative Predictors of Diabetic Remission Following Bariatric Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20and%20Using%20Preoperative%20Predictors%20of%20Diabetic%20Remission%20Following%20Bariatric%20Surgery&rft.jtitle=JPEN.%20Journal%20of%20parenteral%20and%20enteral%20nutrition&rft.au=Stallard,%20Ryan&rft.date=2018-03&rft.volume=42&rft.issue=3&rft.spage=573&rft.epage=580&rft.pages=573-580&rft.issn=0148-6071&rft.eissn=1941-2444&rft_id=info:doi/10.1177/0148607117697934&rft_dat=%3Cproquest_cross%3E1970630708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970630708&rft_id=info:pmid/29187047&rfr_iscdi=true