Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol

Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipopro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atherosclerosis 2018-01, Vol.268, p.196-206
Hauptverfasser: Xu, Yu-Xin, Redon, Valeska, Yu, Haojie, Querbes, William, Pirruccello, James, Liebow, Abigail, Deik, Amy, Trindade, Kevin, Wang, Xiao, Musunuru, Kiran, Clish, Clary B., Cowan, Chad, Fizgerald, Kevin, Rader, Daniel, Kathiresan, Sekar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue
container_start_page 196
container_title Atherosclerosis
container_volume 268
creator Xu, Yu-Xin
Redon, Valeska
Yu, Haojie
Querbes, William
Pirruccello, James
Liebow, Abigail
Deik, Amy
Trindade, Kevin
Wang, Xiao
Musunuru, Kiran
Clish, Clary B.
Cowan, Chad
Fizgerald, Kevin
Rader, Daniel
Kathiresan, Sekar
description Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C. We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system. RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake. Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency. •Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.
doi_str_mv 10.1016/j.atherosclerosis.2017.08.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1970272588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021915017312650</els_id><sourcerecordid>1970272588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EokvhLyBfkMohwWM7iXPgUK3KFmkFCC1ny7EnW2-9cYizRf33eLXbHjhxmTnMe_NmPkI-ACuBQf1pV5r5DqeYbDhWn0rOoCmZKpmAF2QBqmkLkEq-JAvGOBQtVOyCvElpxxiTDajX5IK3oETNxYJsf8aANPbUDFsfx-hx9kMR_D1SQa-uv61-bNbiI_UDnXB7CCZPt3QMJu0NDfiA4egN8U_hcEh-fqTBj3Gc4ozZYu_y8jTnO8Nb8qo3IeG7c78kv77cbJa3xfr76uvyel1YKeVc2Bpr5Spbd4Z3xvGqY73o676zPe-4U1VrLICrQDih2hak6ZlUQoAUxlhWi0tyddqbb_h9yOF675PFEMyA8ZA0tA3jDa-UytLPJ6nNHNOEvR4nvzfTowamj6z1Tv_DWh9Za6Z0Zp39789Rh26P7tn9BDcLVicB5ocfPE46WY-DRecntLN20f9n1F9a3psJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970272588</pqid></control><display><type>article</type><title>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Yu-Xin ; Redon, Valeska ; Yu, Haojie ; Querbes, William ; Pirruccello, James ; Liebow, Abigail ; Deik, Amy ; Trindade, Kevin ; Wang, Xiao ; Musunuru, Kiran ; Clish, Clary B. ; Cowan, Chad ; Fizgerald, Kevin ; Rader, Daniel ; Kathiresan, Sekar</creator><creatorcontrib>Xu, Yu-Xin ; Redon, Valeska ; Yu, Haojie ; Querbes, William ; Pirruccello, James ; Liebow, Abigail ; Deik, Amy ; Trindade, Kevin ; Wang, Xiao ; Musunuru, Kiran ; Clish, Clary B. ; Cowan, Chad ; Fizgerald, Kevin ; Rader, Daniel ; Kathiresan, Sekar</creatorcontrib><description>Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C. We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system. RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake. Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency. •Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.</description><identifier>ISSN: 0021-9150</identifier><identifier>EISSN: 1879-1484</identifier><identifier>DOI: 10.1016/j.atherosclerosis.2017.08.031</identifier><identifier>PMID: 29183623</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Angiopoietin-like protein 3 ; Angiopoietin-like Proteins - deficiency ; Angiopoietin-like Proteins - genetics ; Angiopoietin-like Proteins - metabolism ; ANGPTL3 ; Animals ; Apolipoprotein B-100 - genetics ; Apolipoprotein B-100 - metabolism ; Biomarkers - blood ; Cholesterol ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol Ester Transfer Proteins - metabolism ; Cholesterol, HDL - blood ; Cholesterol, LDL - blood ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Down-Regulation ; Gene Editing - methods ; HDL ; Hep G2 Cells ; High-density lipoprotein ; Humans ; LDL ; LDL receptor ; LDLR ; Lipoprotein ; Liver - metabolism ; Low-density lipoprotein ; Mice, Inbred C57BL ; Mice, Knockout ; Obesity - blood ; Obesity - genetics ; Proprotein Convertase 9 - genetics ; Proprotein Convertase 9 - metabolism ; Receptors, LDL - deficiency ; RNA Interference ; Triglycerides ; Triglycerides - blood</subject><ispartof>Atherosclerosis, 2018-01, Vol.268, p.196-206</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</citedby><cites>FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.atherosclerosis.2017.08.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29183623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yu-Xin</creatorcontrib><creatorcontrib>Redon, Valeska</creatorcontrib><creatorcontrib>Yu, Haojie</creatorcontrib><creatorcontrib>Querbes, William</creatorcontrib><creatorcontrib>Pirruccello, James</creatorcontrib><creatorcontrib>Liebow, Abigail</creatorcontrib><creatorcontrib>Deik, Amy</creatorcontrib><creatorcontrib>Trindade, Kevin</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Musunuru, Kiran</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Cowan, Chad</creatorcontrib><creatorcontrib>Fizgerald, Kevin</creatorcontrib><creatorcontrib>Rader, Daniel</creatorcontrib><creatorcontrib>Kathiresan, Sekar</creatorcontrib><title>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</title><title>Atherosclerosis</title><addtitle>Atherosclerosis</addtitle><description>Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C. We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system. RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake. Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency. •Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.</description><subject>Angiopoietin-like protein 3</subject><subject>Angiopoietin-like Proteins - deficiency</subject><subject>Angiopoietin-like Proteins - genetics</subject><subject>Angiopoietin-like Proteins - metabolism</subject><subject>ANGPTL3</subject><subject>Animals</subject><subject>Apolipoprotein B-100 - genetics</subject><subject>Apolipoprotein B-100 - metabolism</subject><subject>Biomarkers - blood</subject><subject>Cholesterol</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol Ester Transfer Proteins - metabolism</subject><subject>Cholesterol, HDL - blood</subject><subject>Cholesterol, LDL - blood</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Down-Regulation</subject><subject>Gene Editing - methods</subject><subject>HDL</subject><subject>Hep G2 Cells</subject><subject>High-density lipoprotein</subject><subject>Humans</subject><subject>LDL</subject><subject>LDL receptor</subject><subject>LDLR</subject><subject>Lipoprotein</subject><subject>Liver - metabolism</subject><subject>Low-density lipoprotein</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Obesity - blood</subject><subject>Obesity - genetics</subject><subject>Proprotein Convertase 9 - genetics</subject><subject>Proprotein Convertase 9 - metabolism</subject><subject>Receptors, LDL - deficiency</subject><subject>RNA Interference</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><issn>0021-9150</issn><issn>1879-1484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEFv1DAQhS0EokvhLyBfkMohwWM7iXPgUK3KFmkFCC1ny7EnW2-9cYizRf33eLXbHjhxmTnMe_NmPkI-ACuBQf1pV5r5DqeYbDhWn0rOoCmZKpmAF2QBqmkLkEq-JAvGOBQtVOyCvElpxxiTDajX5IK3oETNxYJsf8aANPbUDFsfx-hx9kMR_D1SQa-uv61-bNbiI_UDnXB7CCZPt3QMJu0NDfiA4egN8U_hcEh-fqTBj3Gc4ozZYu_y8jTnO8Nb8qo3IeG7c78kv77cbJa3xfr76uvyel1YKeVc2Bpr5Spbd4Z3xvGqY73o676zPe-4U1VrLICrQDih2hak6ZlUQoAUxlhWi0tyddqbb_h9yOF675PFEMyA8ZA0tA3jDa-UytLPJ6nNHNOEvR4nvzfTowamj6z1Tv_DWh9Za6Z0Zp39789Rh26P7tn9BDcLVicB5ocfPE46WY-DRecntLN20f9n1F9a3psJ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Xu, Yu-Xin</creator><creator>Redon, Valeska</creator><creator>Yu, Haojie</creator><creator>Querbes, William</creator><creator>Pirruccello, James</creator><creator>Liebow, Abigail</creator><creator>Deik, Amy</creator><creator>Trindade, Kevin</creator><creator>Wang, Xiao</creator><creator>Musunuru, Kiran</creator><creator>Clish, Clary B.</creator><creator>Cowan, Chad</creator><creator>Fizgerald, Kevin</creator><creator>Rader, Daniel</creator><creator>Kathiresan, Sekar</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</title><author>Xu, Yu-Xin ; Redon, Valeska ; Yu, Haojie ; Querbes, William ; Pirruccello, James ; Liebow, Abigail ; Deik, Amy ; Trindade, Kevin ; Wang, Xiao ; Musunuru, Kiran ; Clish, Clary B. ; Cowan, Chad ; Fizgerald, Kevin ; Rader, Daniel ; Kathiresan, Sekar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiopoietin-like protein 3</topic><topic>Angiopoietin-like Proteins - deficiency</topic><topic>Angiopoietin-like Proteins - genetics</topic><topic>Angiopoietin-like Proteins - metabolism</topic><topic>ANGPTL3</topic><topic>Animals</topic><topic>Apolipoprotein B-100 - genetics</topic><topic>Apolipoprotein B-100 - metabolism</topic><topic>Biomarkers - blood</topic><topic>Cholesterol</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol Ester Transfer Proteins - metabolism</topic><topic>Cholesterol, HDL - blood</topic><topic>Cholesterol, LDL - blood</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Down-Regulation</topic><topic>Gene Editing - methods</topic><topic>HDL</topic><topic>Hep G2 Cells</topic><topic>High-density lipoprotein</topic><topic>Humans</topic><topic>LDL</topic><topic>LDL receptor</topic><topic>LDLR</topic><topic>Lipoprotein</topic><topic>Liver - metabolism</topic><topic>Low-density lipoprotein</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Obesity - blood</topic><topic>Obesity - genetics</topic><topic>Proprotein Convertase 9 - genetics</topic><topic>Proprotein Convertase 9 - metabolism</topic><topic>Receptors, LDL - deficiency</topic><topic>RNA Interference</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yu-Xin</creatorcontrib><creatorcontrib>Redon, Valeska</creatorcontrib><creatorcontrib>Yu, Haojie</creatorcontrib><creatorcontrib>Querbes, William</creatorcontrib><creatorcontrib>Pirruccello, James</creatorcontrib><creatorcontrib>Liebow, Abigail</creatorcontrib><creatorcontrib>Deik, Amy</creatorcontrib><creatorcontrib>Trindade, Kevin</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Musunuru, Kiran</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Cowan, Chad</creatorcontrib><creatorcontrib>Fizgerald, Kevin</creatorcontrib><creatorcontrib>Rader, Daniel</creatorcontrib><creatorcontrib>Kathiresan, Sekar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Atherosclerosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yu-Xin</au><au>Redon, Valeska</au><au>Yu, Haojie</au><au>Querbes, William</au><au>Pirruccello, James</au><au>Liebow, Abigail</au><au>Deik, Amy</au><au>Trindade, Kevin</au><au>Wang, Xiao</au><au>Musunuru, Kiran</au><au>Clish, Clary B.</au><au>Cowan, Chad</au><au>Fizgerald, Kevin</au><au>Rader, Daniel</au><au>Kathiresan, Sekar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</atitle><jtitle>Atherosclerosis</jtitle><addtitle>Atherosclerosis</addtitle><date>2018-01</date><risdate>2018</risdate><volume>268</volume><spage>196</spage><epage>206</epage><pages>196-206</pages><issn>0021-9150</issn><eissn>1879-1484</eissn><abstract>Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C. We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system. RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake. Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency. •Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>29183623</pmid><doi>10.1016/j.atherosclerosis.2017.08.031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9150
ispartof Atherosclerosis, 2018-01, Vol.268, p.196-206
issn 0021-9150
1879-1484
language eng
recordid cdi_proquest_miscellaneous_1970272588
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Angiopoietin-like protein 3
Angiopoietin-like Proteins - deficiency
Angiopoietin-like Proteins - genetics
Angiopoietin-like Proteins - metabolism
ANGPTL3
Animals
Apolipoprotein B-100 - genetics
Apolipoprotein B-100 - metabolism
Biomarkers - blood
Cholesterol
Cholesterol Ester Transfer Proteins - genetics
Cholesterol Ester Transfer Proteins - metabolism
Cholesterol, HDL - blood
Cholesterol, LDL - blood
CRISPR-Associated Protein 9 - genetics
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems
Down-Regulation
Gene Editing - methods
HDL
Hep G2 Cells
High-density lipoprotein
Humans
LDL
LDL receptor
LDLR
Lipoprotein
Liver - metabolism
Low-density lipoprotein
Mice, Inbred C57BL
Mice, Knockout
Obesity - blood
Obesity - genetics
Proprotein Convertase 9 - genetics
Proprotein Convertase 9 - metabolism
Receptors, LDL - deficiency
RNA Interference
Triglycerides
Triglycerides - blood
title Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20angiopoietin-like%203%20(ANGPTL3)%20in%20regulating%20plasma%20level%20of%20low-density%20lipoprotein%20cholesterol&rft.jtitle=Atherosclerosis&rft.au=Xu,%20Yu-Xin&rft.date=2018-01&rft.volume=268&rft.spage=196&rft.epage=206&rft.pages=196-206&rft.issn=0021-9150&rft.eissn=1879-1484&rft_id=info:doi/10.1016/j.atherosclerosis.2017.08.031&rft_dat=%3Cproquest_cross%3E1970272588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970272588&rft_id=info:pmid/29183623&rft_els_id=S0021915017312650&rfr_iscdi=true