Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol
Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipopro...
Gespeichert in:
Veröffentlicht in: | Atherosclerosis 2018-01, Vol.268, p.196-206 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | |
container_start_page | 196 |
container_title | Atherosclerosis |
container_volume | 268 |
creator | Xu, Yu-Xin Redon, Valeska Yu, Haojie Querbes, William Pirruccello, James Liebow, Abigail Deik, Amy Trindade, Kevin Wang, Xiao Musunuru, Kiran Clish, Clary B. Cowan, Chad Fizgerald, Kevin Rader, Daniel Kathiresan, Sekar |
description | Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C.
We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system.
RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.
Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency.
•Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency. |
doi_str_mv | 10.1016/j.atherosclerosis.2017.08.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1970272588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021915017312650</els_id><sourcerecordid>1970272588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EokvhLyBfkMohwWM7iXPgUK3KFmkFCC1ny7EnW2-9cYizRf33eLXbHjhxmTnMe_NmPkI-ACuBQf1pV5r5DqeYbDhWn0rOoCmZKpmAF2QBqmkLkEq-JAvGOBQtVOyCvElpxxiTDajX5IK3oETNxYJsf8aANPbUDFsfx-hx9kMR_D1SQa-uv61-bNbiI_UDnXB7CCZPt3QMJu0NDfiA4egN8U_hcEh-fqTBj3Gc4ozZYu_y8jTnO8Nb8qo3IeG7c78kv77cbJa3xfr76uvyel1YKeVc2Bpr5Spbd4Z3xvGqY73o676zPe-4U1VrLICrQDih2hak6ZlUQoAUxlhWi0tyddqbb_h9yOF675PFEMyA8ZA0tA3jDa-UytLPJ6nNHNOEvR4nvzfTowamj6z1Tv_DWh9Za6Z0Zp39789Rh26P7tn9BDcLVicB5ocfPE46WY-DRecntLN20f9n1F9a3psJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970272588</pqid></control><display><type>article</type><title>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Yu-Xin ; Redon, Valeska ; Yu, Haojie ; Querbes, William ; Pirruccello, James ; Liebow, Abigail ; Deik, Amy ; Trindade, Kevin ; Wang, Xiao ; Musunuru, Kiran ; Clish, Clary B. ; Cowan, Chad ; Fizgerald, Kevin ; Rader, Daniel ; Kathiresan, Sekar</creator><creatorcontrib>Xu, Yu-Xin ; Redon, Valeska ; Yu, Haojie ; Querbes, William ; Pirruccello, James ; Liebow, Abigail ; Deik, Amy ; Trindade, Kevin ; Wang, Xiao ; Musunuru, Kiran ; Clish, Clary B. ; Cowan, Chad ; Fizgerald, Kevin ; Rader, Daniel ; Kathiresan, Sekar</creatorcontrib><description>Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C.
We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system.
RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.
Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency.
•Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.</description><identifier>ISSN: 0021-9150</identifier><identifier>EISSN: 1879-1484</identifier><identifier>DOI: 10.1016/j.atherosclerosis.2017.08.031</identifier><identifier>PMID: 29183623</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Angiopoietin-like protein 3 ; Angiopoietin-like Proteins - deficiency ; Angiopoietin-like Proteins - genetics ; Angiopoietin-like Proteins - metabolism ; ANGPTL3 ; Animals ; Apolipoprotein B-100 - genetics ; Apolipoprotein B-100 - metabolism ; Biomarkers - blood ; Cholesterol ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol Ester Transfer Proteins - metabolism ; Cholesterol, HDL - blood ; Cholesterol, LDL - blood ; CRISPR-Associated Protein 9 - genetics ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Down-Regulation ; Gene Editing - methods ; HDL ; Hep G2 Cells ; High-density lipoprotein ; Humans ; LDL ; LDL receptor ; LDLR ; Lipoprotein ; Liver - metabolism ; Low-density lipoprotein ; Mice, Inbred C57BL ; Mice, Knockout ; Obesity - blood ; Obesity - genetics ; Proprotein Convertase 9 - genetics ; Proprotein Convertase 9 - metabolism ; Receptors, LDL - deficiency ; RNA Interference ; Triglycerides ; Triglycerides - blood</subject><ispartof>Atherosclerosis, 2018-01, Vol.268, p.196-206</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</citedby><cites>FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.atherosclerosis.2017.08.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29183623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yu-Xin</creatorcontrib><creatorcontrib>Redon, Valeska</creatorcontrib><creatorcontrib>Yu, Haojie</creatorcontrib><creatorcontrib>Querbes, William</creatorcontrib><creatorcontrib>Pirruccello, James</creatorcontrib><creatorcontrib>Liebow, Abigail</creatorcontrib><creatorcontrib>Deik, Amy</creatorcontrib><creatorcontrib>Trindade, Kevin</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Musunuru, Kiran</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Cowan, Chad</creatorcontrib><creatorcontrib>Fizgerald, Kevin</creatorcontrib><creatorcontrib>Rader, Daniel</creatorcontrib><creatorcontrib>Kathiresan, Sekar</creatorcontrib><title>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</title><title>Atherosclerosis</title><addtitle>Atherosclerosis</addtitle><description>Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C.
We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system.
RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.
Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency.
•Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.</description><subject>Angiopoietin-like protein 3</subject><subject>Angiopoietin-like Proteins - deficiency</subject><subject>Angiopoietin-like Proteins - genetics</subject><subject>Angiopoietin-like Proteins - metabolism</subject><subject>ANGPTL3</subject><subject>Animals</subject><subject>Apolipoprotein B-100 - genetics</subject><subject>Apolipoprotein B-100 - metabolism</subject><subject>Biomarkers - blood</subject><subject>Cholesterol</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol Ester Transfer Proteins - metabolism</subject><subject>Cholesterol, HDL - blood</subject><subject>Cholesterol, LDL - blood</subject><subject>CRISPR-Associated Protein 9 - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Down-Regulation</subject><subject>Gene Editing - methods</subject><subject>HDL</subject><subject>Hep G2 Cells</subject><subject>High-density lipoprotein</subject><subject>Humans</subject><subject>LDL</subject><subject>LDL receptor</subject><subject>LDLR</subject><subject>Lipoprotein</subject><subject>Liver - metabolism</subject><subject>Low-density lipoprotein</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Obesity - blood</subject><subject>Obesity - genetics</subject><subject>Proprotein Convertase 9 - genetics</subject><subject>Proprotein Convertase 9 - metabolism</subject><subject>Receptors, LDL - deficiency</subject><subject>RNA Interference</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><issn>0021-9150</issn><issn>1879-1484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEFv1DAQhS0EokvhLyBfkMohwWM7iXPgUK3KFmkFCC1ny7EnW2-9cYizRf33eLXbHjhxmTnMe_NmPkI-ACuBQf1pV5r5DqeYbDhWn0rOoCmZKpmAF2QBqmkLkEq-JAvGOBQtVOyCvElpxxiTDajX5IK3oETNxYJsf8aANPbUDFsfx-hx9kMR_D1SQa-uv61-bNbiI_UDnXB7CCZPt3QMJu0NDfiA4egN8U_hcEh-fqTBj3Gc4ozZYu_y8jTnO8Nb8qo3IeG7c78kv77cbJa3xfr76uvyel1YKeVc2Bpr5Spbd4Z3xvGqY73o676zPe-4U1VrLICrQDih2hak6ZlUQoAUxlhWi0tyddqbb_h9yOF675PFEMyA8ZA0tA3jDa-UytLPJ6nNHNOEvR4nvzfTowamj6z1Tv_DWh9Za6Z0Zp39789Rh26P7tn9BDcLVicB5ocfPE46WY-DRecntLN20f9n1F9a3psJ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Xu, Yu-Xin</creator><creator>Redon, Valeska</creator><creator>Yu, Haojie</creator><creator>Querbes, William</creator><creator>Pirruccello, James</creator><creator>Liebow, Abigail</creator><creator>Deik, Amy</creator><creator>Trindade, Kevin</creator><creator>Wang, Xiao</creator><creator>Musunuru, Kiran</creator><creator>Clish, Clary B.</creator><creator>Cowan, Chad</creator><creator>Fizgerald, Kevin</creator><creator>Rader, Daniel</creator><creator>Kathiresan, Sekar</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</title><author>Xu, Yu-Xin ; Redon, Valeska ; Yu, Haojie ; Querbes, William ; Pirruccello, James ; Liebow, Abigail ; Deik, Amy ; Trindade, Kevin ; Wang, Xiao ; Musunuru, Kiran ; Clish, Clary B. ; Cowan, Chad ; Fizgerald, Kevin ; Rader, Daniel ; Kathiresan, Sekar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c6e68d5c6ba2bad25b0f3f6fbcf2b2d859ac11d513d389914af04833143aac063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiopoietin-like protein 3</topic><topic>Angiopoietin-like Proteins - deficiency</topic><topic>Angiopoietin-like Proteins - genetics</topic><topic>Angiopoietin-like Proteins - metabolism</topic><topic>ANGPTL3</topic><topic>Animals</topic><topic>Apolipoprotein B-100 - genetics</topic><topic>Apolipoprotein B-100 - metabolism</topic><topic>Biomarkers - blood</topic><topic>Cholesterol</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol Ester Transfer Proteins - metabolism</topic><topic>Cholesterol, HDL - blood</topic><topic>Cholesterol, LDL - blood</topic><topic>CRISPR-Associated Protein 9 - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Down-Regulation</topic><topic>Gene Editing - methods</topic><topic>HDL</topic><topic>Hep G2 Cells</topic><topic>High-density lipoprotein</topic><topic>Humans</topic><topic>LDL</topic><topic>LDL receptor</topic><topic>LDLR</topic><topic>Lipoprotein</topic><topic>Liver - metabolism</topic><topic>Low-density lipoprotein</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Obesity - blood</topic><topic>Obesity - genetics</topic><topic>Proprotein Convertase 9 - genetics</topic><topic>Proprotein Convertase 9 - metabolism</topic><topic>Receptors, LDL - deficiency</topic><topic>RNA Interference</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yu-Xin</creatorcontrib><creatorcontrib>Redon, Valeska</creatorcontrib><creatorcontrib>Yu, Haojie</creatorcontrib><creatorcontrib>Querbes, William</creatorcontrib><creatorcontrib>Pirruccello, James</creatorcontrib><creatorcontrib>Liebow, Abigail</creatorcontrib><creatorcontrib>Deik, Amy</creatorcontrib><creatorcontrib>Trindade, Kevin</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Musunuru, Kiran</creatorcontrib><creatorcontrib>Clish, Clary B.</creatorcontrib><creatorcontrib>Cowan, Chad</creatorcontrib><creatorcontrib>Fizgerald, Kevin</creatorcontrib><creatorcontrib>Rader, Daniel</creatorcontrib><creatorcontrib>Kathiresan, Sekar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Atherosclerosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yu-Xin</au><au>Redon, Valeska</au><au>Yu, Haojie</au><au>Querbes, William</au><au>Pirruccello, James</au><au>Liebow, Abigail</au><au>Deik, Amy</au><au>Trindade, Kevin</au><au>Wang, Xiao</au><au>Musunuru, Kiran</au><au>Clish, Clary B.</au><au>Cowan, Chad</au><au>Fizgerald, Kevin</au><au>Rader, Daniel</au><au>Kathiresan, Sekar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol</atitle><jtitle>Atherosclerosis</jtitle><addtitle>Atherosclerosis</addtitle><date>2018-01</date><risdate>2018</risdate><volume>268</volume><spage>196</spage><epage>206</epage><pages>196-206</pages><issn>0021-9150</issn><eissn>1879-1484</eissn><abstract>Angiopoietin-like 3 (ANGPTL3) has emerged as a key regulator of lipoprotein metabolism in humans. Homozygous loss of ANGPTL3 function causes familial combined hypolipidemia characterized by low plasma levels of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). While known effects of ANGPTL3 in inhibiting lipoprotein lipase and endothelial lipase contribute to the low TG and HDL-C, respectively, the basis of low LDL-C remains unclear. Our aim was to explore the role of ANGPTL3 in modulating plasma LDL-C.
We performed RNAi-mediated gene silencing of ANGPTL3 in five mouse models and in human hepatoma cells. We validated results by deleting ANGPTL3 gene using the CRISPR/Cas9 genome editing system.
RNAi-mediated Angptl3 silencing in mouse livers resulted in very low TG, HDL-C and LDL-C, a pattern similar to the human phenotype. The effect was observed in wild-type and obese mice, while in hCETP/apolipoprotein (Apo) B-100 double transgenic mice, the silencing decreased LDL-C and TG, but not HDL-C. In a humanized mouse model (Apobec1−/− carrying human ApoB-100 transgene) deficient in the LDL receptor (LDLR), Angptl3 silencing had minimum effect on LDL-C, suggesting the effect being linked to LDLR. This observation is supported by an additive effect on LDL-C between ANGPTL3 and PCSK9 siRNAs. ANGPTL3 gene deletion induced cellular long-chain TG and ApoB-100 accumulation with elevated LDLR and LDLR-related protein (LRP) 1 expression. Consistent with this, ANGPTL3 deficiency by gene deletion or silencing reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.
Reduced secretion and increased uptake of ApoB-containing lipoproteins may contribute to the low LDL-C observed in mice and humans with genetic ANGPTL3 deficiency.
•Angptl3 silencing induced combined hypolipidemia in WT and obese mice.•Angptl3 silencing reduced plasma TG and LDL-C, but not HDL-C, in hCETP/ApoB-100 transgenic mice.•The low LDL-C from Angptl3 silencing is linked to LDLR in Apobec1−/−/ApoB-100 transgenic mice lacking LDLR.•ANGPTL3 deficiency in human hepatoma cells reduced nascent ApoB-100 secretion and increased LDL/VLDL uptake.•Reduced secretion and increased uptake of ApoB-containing lipoproteins contribute to the low LDL-C caused by ANGPTL3 deficiency.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>29183623</pmid><doi>10.1016/j.atherosclerosis.2017.08.031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9150 |
ispartof | Atherosclerosis, 2018-01, Vol.268, p.196-206 |
issn | 0021-9150 1879-1484 |
language | eng |
recordid | cdi_proquest_miscellaneous_1970272588 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Angiopoietin-like protein 3 Angiopoietin-like Proteins - deficiency Angiopoietin-like Proteins - genetics Angiopoietin-like Proteins - metabolism ANGPTL3 Animals Apolipoprotein B-100 - genetics Apolipoprotein B-100 - metabolism Biomarkers - blood Cholesterol Cholesterol Ester Transfer Proteins - genetics Cholesterol Ester Transfer Proteins - metabolism Cholesterol, HDL - blood Cholesterol, LDL - blood CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems Down-Regulation Gene Editing - methods HDL Hep G2 Cells High-density lipoprotein Humans LDL LDL receptor LDLR Lipoprotein Liver - metabolism Low-density lipoprotein Mice, Inbred C57BL Mice, Knockout Obesity - blood Obesity - genetics Proprotein Convertase 9 - genetics Proprotein Convertase 9 - metabolism Receptors, LDL - deficiency RNA Interference Triglycerides Triglycerides - blood |
title | Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20angiopoietin-like%203%20(ANGPTL3)%20in%20regulating%20plasma%20level%20of%20low-density%20lipoprotein%20cholesterol&rft.jtitle=Atherosclerosis&rft.au=Xu,%20Yu-Xin&rft.date=2018-01&rft.volume=268&rft.spage=196&rft.epage=206&rft.pages=196-206&rft.issn=0021-9150&rft.eissn=1879-1484&rft_id=info:doi/10.1016/j.atherosclerosis.2017.08.031&rft_dat=%3Cproquest_cross%3E1970272588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970272588&rft_id=info:pmid/29183623&rft_els_id=S0021915017312650&rfr_iscdi=true |