Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD

Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2007-04, Vol.129 (1), p.57-68
Hauptverfasser: Somesh, Baggavalli P., Sigurdsson, Stefan, Saeki, Hideaki, Erdjument-Bromage, Hediye, Tempst, Paul, Svejstrup, Jesper Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 57
container_title Cell
container_volume 129
creator Somesh, Baggavalli P.
Sigurdsson, Stefan
Saeki, Hideaki
Erdjument-Bromage, Hediye
Tempst, Paul
Svejstrup, Jesper Q.
description Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.
doi_str_mv 10.1016/j.cell.2007.01.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19700423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867407003066</els_id><sourcerecordid>19700423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQRi0EotvCH-CAfOKWMI6d2JG4VFtKV6oAQXu2HHuWepXYre0U7b8nq10JTpzm8r4nzSPkHYOaAes-7mqL41g3ALIGVoPoXpAVg15WgsnmJVkB9E2lOinOyHnOOwBQbdu-JmdMCqak6lYkrOM0zcFbU3wMdMDyGzHQK5-LCYX-9AUz9YH--HpJv8dxP2EyGelmQ8tDivOvB3o_-KfZl_14NFwbW2LK1AS3IPjvaH139Ya82pox49vTvSD315_v1jfV7bcvm_XlbWVF35Zq2wxMAW9bjq53DDthB64Md044xZC1jRPSdrJDLoUyUvGm67lk1kiHVlp-QT4cvY8pPs2Yi558PtQyAeOcNeslgGj4AjZH0KaYc8Ktfkx-MmmvGehDZb3Th50-VNbA9FJ5Gb0_2edhQvd3csq6AJ-OAC4_PntMOluPwaLzCW3RLvr_-f8AjsOOrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19700423</pqid></control><display><type>article</type><title>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Somesh, Baggavalli P. ; Sigurdsson, Stefan ; Saeki, Hideaki ; Erdjument-Bromage, Hediye ; Tempst, Paul ; Svejstrup, Jesper Q.</creator><creatorcontrib>Somesh, Baggavalli P. ; Sigurdsson, Stefan ; Saeki, Hideaki ; Erdjument-Bromage, Hediye ; Tempst, Paul ; Svejstrup, Jesper Q.</creatorcontrib><description>Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is &gt;125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2007.01.046</identifier><identifier>PMID: 17418786</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Binding Sites ; Dimerization ; DNA Damage ; Endosomal Sorting Complexes Required for Transport ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Structure, Tertiary ; RNA Polymerase II - chemistry ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Ubiquitin - metabolism ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-Protein Ligase Complexes - metabolism</subject><ispartof>Cell, 2007-04, Vol.129 (1), p.57-68</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</citedby><cites>FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2007.01.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17418786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somesh, Baggavalli P.</creatorcontrib><creatorcontrib>Sigurdsson, Stefan</creatorcontrib><creatorcontrib>Saeki, Hideaki</creatorcontrib><creatorcontrib>Erdjument-Bromage, Hediye</creatorcontrib><creatorcontrib>Tempst, Paul</creatorcontrib><creatorcontrib>Svejstrup, Jesper Q.</creatorcontrib><title>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</title><title>Cell</title><addtitle>Cell</addtitle><description>Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is &gt;125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Dimerization</subject><subject>DNA Damage</subject><subject>Endosomal Sorting Complexes Required for Transport</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Structure, Tertiary</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-Protein Ligase Complexes - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAQRi0EotvCH-CAfOKWMI6d2JG4VFtKV6oAQXu2HHuWepXYre0U7b8nq10JTpzm8r4nzSPkHYOaAes-7mqL41g3ALIGVoPoXpAVg15WgsnmJVkB9E2lOinOyHnOOwBQbdu-JmdMCqak6lYkrOM0zcFbU3wMdMDyGzHQK5-LCYX-9AUz9YH--HpJv8dxP2EyGelmQ8tDivOvB3o_-KfZl_14NFwbW2LK1AS3IPjvaH139Ya82pox49vTvSD315_v1jfV7bcvm_XlbWVF35Zq2wxMAW9bjq53DDthB64Md044xZC1jRPSdrJDLoUyUvGm67lk1kiHVlp-QT4cvY8pPs2Yi558PtQyAeOcNeslgGj4AjZH0KaYc8Ktfkx-MmmvGehDZb3Th50-VNbA9FJ5Gb0_2edhQvd3csq6AJ-OAC4_PntMOluPwaLzCW3RLvr_-f8AjsOOrw</recordid><startdate>20070406</startdate><enddate>20070406</enddate><creator>Somesh, Baggavalli P.</creator><creator>Sigurdsson, Stefan</creator><creator>Saeki, Hideaki</creator><creator>Erdjument-Bromage, Hediye</creator><creator>Tempst, Paul</creator><creator>Svejstrup, Jesper Q.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope></search><sort><creationdate>20070406</creationdate><title>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</title><author>Somesh, Baggavalli P. ; Sigurdsson, Stefan ; Saeki, Hideaki ; Erdjument-Bromage, Hediye ; Tempst, Paul ; Svejstrup, Jesper Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Dimerization</topic><topic>DNA Damage</topic><topic>Endosomal Sorting Complexes Required for Transport</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Structure, Tertiary</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-Protein Ligase Complexes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somesh, Baggavalli P.</creatorcontrib><creatorcontrib>Sigurdsson, Stefan</creatorcontrib><creatorcontrib>Saeki, Hideaki</creatorcontrib><creatorcontrib>Erdjument-Bromage, Hediye</creatorcontrib><creatorcontrib>Tempst, Paul</creatorcontrib><creatorcontrib>Svejstrup, Jesper Q.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somesh, Baggavalli P.</au><au>Sigurdsson, Stefan</au><au>Saeki, Hideaki</au><au>Erdjument-Bromage, Hediye</au><au>Tempst, Paul</au><au>Svejstrup, Jesper Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2007-04-06</date><risdate>2007</risdate><volume>129</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is &gt;125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17418786</pmid><doi>10.1016/j.cell.2007.01.046</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2007-04, Vol.129 (1), p.57-68
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_19700423
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Amino Acid Sequence
Binding Sites
Dimerization
DNA Damage
Endosomal Sorting Complexes Required for Transport
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
Protein Structure, Tertiary
RNA Polymerase II - chemistry
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Ubiquitin - metabolism
Ubiquitin-Conjugating Enzymes - metabolism
Ubiquitin-Protein Ligase Complexes - metabolism
title Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication%20between%20Distant%20Sites%20in%20RNA%20Polymerase%20II%20through%20Ubiquitylation%20Factors%20and%20the%20Polymerase%20CTD&rft.jtitle=Cell&rft.au=Somesh,%20Baggavalli%20P.&rft.date=2007-04-06&rft.volume=129&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2007.01.046&rft_dat=%3Cproquest_cross%3E19700423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19700423&rft_id=info:pmid/17418786&rft_els_id=S0092867407003066&rfr_iscdi=true