Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD
Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the e...
Gespeichert in:
Veröffentlicht in: | Cell 2007-04, Vol.129 (1), p.57-68 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Cell |
container_volume | 129 |
creator | Somesh, Baggavalli P. Sigurdsson, Stefan Saeki, Hideaki Erdjument-Bromage, Hediye Tempst, Paul Svejstrup, Jesper Q. |
description | Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition. |
doi_str_mv | 10.1016/j.cell.2007.01.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19700423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867407003066</els_id><sourcerecordid>19700423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQRi0EotvCH-CAfOKWMI6d2JG4VFtKV6oAQXu2HHuWepXYre0U7b8nq10JTpzm8r4nzSPkHYOaAes-7mqL41g3ALIGVoPoXpAVg15WgsnmJVkB9E2lOinOyHnOOwBQbdu-JmdMCqak6lYkrOM0zcFbU3wMdMDyGzHQK5-LCYX-9AUz9YH--HpJv8dxP2EyGelmQ8tDivOvB3o_-KfZl_14NFwbW2LK1AS3IPjvaH139Ya82pox49vTvSD315_v1jfV7bcvm_XlbWVF35Zq2wxMAW9bjq53DDthB64Md044xZC1jRPSdrJDLoUyUvGm67lk1kiHVlp-QT4cvY8pPs2Yi558PtQyAeOcNeslgGj4AjZH0KaYc8Ktfkx-MmmvGehDZb3Th50-VNbA9FJ5Gb0_2edhQvd3csq6AJ-OAC4_PntMOluPwaLzCW3RLvr_-f8AjsOOrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19700423</pqid></control><display><type>article</type><title>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Somesh, Baggavalli P. ; Sigurdsson, Stefan ; Saeki, Hideaki ; Erdjument-Bromage, Hediye ; Tempst, Paul ; Svejstrup, Jesper Q.</creator><creatorcontrib>Somesh, Baggavalli P. ; Sigurdsson, Stefan ; Saeki, Hideaki ; Erdjument-Bromage, Hediye ; Tempst, Paul ; Svejstrup, Jesper Q.</creatorcontrib><description>Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2007.01.046</identifier><identifier>PMID: 17418786</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Binding Sites ; Dimerization ; DNA Damage ; Endosomal Sorting Complexes Required for Transport ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Structure, Tertiary ; RNA Polymerase II - chemistry ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Ubiquitin - metabolism ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-Protein Ligase Complexes - metabolism</subject><ispartof>Cell, 2007-04, Vol.129 (1), p.57-68</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</citedby><cites>FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2007.01.046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17418786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somesh, Baggavalli P.</creatorcontrib><creatorcontrib>Sigurdsson, Stefan</creatorcontrib><creatorcontrib>Saeki, Hideaki</creatorcontrib><creatorcontrib>Erdjument-Bromage, Hediye</creatorcontrib><creatorcontrib>Tempst, Paul</creatorcontrib><creatorcontrib>Svejstrup, Jesper Q.</creatorcontrib><title>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</title><title>Cell</title><addtitle>Cell</addtitle><description>Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Dimerization</subject><subject>DNA Damage</subject><subject>Endosomal Sorting Complexes Required for Transport</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Structure, Tertiary</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-Protein Ligase Complexes - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAQRi0EotvCH-CAfOKWMI6d2JG4VFtKV6oAQXu2HHuWepXYre0U7b8nq10JTpzm8r4nzSPkHYOaAes-7mqL41g3ALIGVoPoXpAVg15WgsnmJVkB9E2lOinOyHnOOwBQbdu-JmdMCqak6lYkrOM0zcFbU3wMdMDyGzHQK5-LCYX-9AUz9YH--HpJv8dxP2EyGelmQ8tDivOvB3o_-KfZl_14NFwbW2LK1AS3IPjvaH139Ya82pox49vTvSD315_v1jfV7bcvm_XlbWVF35Zq2wxMAW9bjq53DDthB64Md044xZC1jRPSdrJDLoUyUvGm67lk1kiHVlp-QT4cvY8pPs2Yi558PtQyAeOcNeslgGj4AjZH0KaYc8Ktfkx-MmmvGehDZb3Th50-VNbA9FJ5Gb0_2edhQvd3csq6AJ-OAC4_PntMOluPwaLzCW3RLvr_-f8AjsOOrw</recordid><startdate>20070406</startdate><enddate>20070406</enddate><creator>Somesh, Baggavalli P.</creator><creator>Sigurdsson, Stefan</creator><creator>Saeki, Hideaki</creator><creator>Erdjument-Bromage, Hediye</creator><creator>Tempst, Paul</creator><creator>Svejstrup, Jesper Q.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope></search><sort><creationdate>20070406</creationdate><title>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</title><author>Somesh, Baggavalli P. ; Sigurdsson, Stefan ; Saeki, Hideaki ; Erdjument-Bromage, Hediye ; Tempst, Paul ; Svejstrup, Jesper Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-f2b1803553ed9d1e64cb38a3dd4d81e152d47c676e3748a783269371ca7dec7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Dimerization</topic><topic>DNA Damage</topic><topic>Endosomal Sorting Complexes Required for Transport</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Structure, Tertiary</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-Protein Ligase Complexes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somesh, Baggavalli P.</creatorcontrib><creatorcontrib>Sigurdsson, Stefan</creatorcontrib><creatorcontrib>Saeki, Hideaki</creatorcontrib><creatorcontrib>Erdjument-Bromage, Hediye</creatorcontrib><creatorcontrib>Tempst, Paul</creatorcontrib><creatorcontrib>Svejstrup, Jesper Q.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somesh, Baggavalli P.</au><au>Sigurdsson, Stefan</au><au>Saeki, Hideaki</au><au>Erdjument-Bromage, Hediye</au><au>Tempst, Paul</au><au>Svejstrup, Jesper Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2007-04-06</date><risdate>2007</risdate><volume>129</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Transcriptional arrest triggers ubiquitylation of RNA polymerase II (RNAPII). We mapped the yeast RNAPII ubiquitylation sites and found that they play an important role in elongation and the DNA-damage response. One site lies in a protein domain that is unordered in free RNAPII, but ordered in the elongating form, helping explain the preferential ubiquitylation of this form. The other site is >125 Ångstroms away, yet mutation of either site affects ubiquitylation of the other, in vitro and in vivo. The basis for this remarkable coupling was uncovered: an Rsp5 (E3) dimer assembled on the RNAPII C-terminal domain (CTD). The ubiquitylation sites bind Ubc5 (E2), which in turn binds Rsp5 to allow modification. Evidence for folding of the CTD compatible with this mechanism of communication between distant sites is provided. These data reveal the specificity and mechanism of RNAPII ubiquitylation and demonstrate that E2s can play a crucial role in substrate recognition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17418786</pmid><doi>10.1016/j.cell.2007.01.046</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2007-04, Vol.129 (1), p.57-68 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_19700423 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Amino Acid Sequence Binding Sites Dimerization DNA Damage Endosomal Sorting Complexes Required for Transport Models, Molecular Molecular Sequence Data Mutagenesis, Site-Directed Protein Structure, Tertiary RNA Polymerase II - chemistry RNA Polymerase II - genetics RNA Polymerase II - metabolism Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Ubiquitin - metabolism Ubiquitin-Conjugating Enzymes - metabolism Ubiquitin-Protein Ligase Complexes - metabolism |
title | Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication%20between%20Distant%20Sites%20in%20RNA%20Polymerase%20II%20through%20Ubiquitylation%20Factors%20and%20the%20Polymerase%20CTD&rft.jtitle=Cell&rft.au=Somesh,%20Baggavalli%20P.&rft.date=2007-04-06&rft.volume=129&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2007.01.046&rft_dat=%3Cproquest_cross%3E19700423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19700423&rft_id=info:pmid/17418786&rft_els_id=S0092867407003066&rfr_iscdi=true |