Thermal analysis of a natural circulation solar air heater with phase change material energy storage

The transient thermal analysis of a natural convection solar air heater is presented. The heater consists of a single-glazed flat plate solar collector integrated with a paraffin type phase change material (PCM) energy storage subsystem and a rectangular enclosure which serves as the working chamber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2003-11, Vol.28 (14), p.2269-2299
1. Verfasser: Enibe, S.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2299
container_issue 14
container_start_page 2269
container_title Renewable energy
container_volume 28
creator Enibe, S.O.
description The transient thermal analysis of a natural convection solar air heater is presented. The heater consists of a single-glazed flat plate solar collector integrated with a paraffin type phase change material (PCM) energy storage subsystem and a rectangular enclosure which serves as the working chamber. The PCM is prepared in modules, with the modules equispaced across the absorber plate. The underside of the absorber plate, together with the vertical sides of the PCM module container, serve as air heating vanes. Air flow through the system is by natural convection. Energy balance equations are developed for each major component of the heater and linked with heat and mass balance equations for the heated air flowing through the system. The airflow rate is determined by balancing the buoyancy head resulting from thermally induced density differences and the friction head due to various flow resistances. The predicted performance of the system is compared with experimental data under daytime no-load conditions over the ambient temperature range of 19–41 °C and daily global irradiation of 4.9–19.9 MJ m –2. Predicted temperatures at specific locations on the absorber plate, heat exchanger plate, glazing, and heated air agree closely with experimental data to within 10, 6, 8, and 10 °C, respectively. Maximum predicted cumulative useful and overall efficiencies of the system are within the ranges 2.5–13 and 7.5–18%, respectively. Correlations of the predicted efficiencies are presented.
doi_str_mv 10.1016/S0960-1481(03)00071-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19700140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148103000715</els_id><sourcerecordid>5665315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-33a99ead1068f575f92bb9d3671c33e292fc6b6f38eaf7cafe94b0817537f50b3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QciNohfVpGma5kpk-AUDL5zX4TQ9WSNdO5NO2b-320Qvd3Xg8Lzn4yHknLMbznh--8Z0zhKeFfyKiWvGmOKJPCAjXiidsLxID8noDzkmJzF-MMZlobIRqWY1hgU0FFpo1tFH2jkKtIV-FYau9cGuGuh919LYNRAo-EBrhB4D_fZ9TZc1RKS2hnaOdLHp-yGHLYb5msa-CzDHU3LkoIl49lvH5P3xYTZ5TqavTy-T-2lihdZ9IgRojVDx4WYnlXQ6LUtdiVxxKwSmOnU2L3MnCgSnLDjUWckKrqRQTrJSjMnlbu4ydJ8rjL1Z-GixaaDFbhUN12p4PGP7wSzPtZTZAModaEMXY0BnlsEvIKwNZ2Yj32zlm41Zw4TZyjdyyF38LoBooXEBWuvjfzjTaVFoNXB3Ow4HLV8eg4nWY2ux8gFtb6rO79n0A5_Bmc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14669554</pqid></control><display><type>article</type><title>Thermal analysis of a natural circulation solar air heater with phase change material energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Enibe, S.O.</creator><creatorcontrib>Enibe, S.O.</creatorcontrib><description>The transient thermal analysis of a natural convection solar air heater is presented. The heater consists of a single-glazed flat plate solar collector integrated with a paraffin type phase change material (PCM) energy storage subsystem and a rectangular enclosure which serves as the working chamber. The PCM is prepared in modules, with the modules equispaced across the absorber plate. The underside of the absorber plate, together with the vertical sides of the PCM module container, serve as air heating vanes. Air flow through the system is by natural convection. Energy balance equations are developed for each major component of the heater and linked with heat and mass balance equations for the heated air flowing through the system. The airflow rate is determined by balancing the buoyancy head resulting from thermally induced density differences and the friction head due to various flow resistances. The predicted performance of the system is compared with experimental data under daytime no-load conditions over the ambient temperature range of 19–41 °C and daily global irradiation of 4.9–19.9 MJ m –2. Predicted temperatures at specific locations on the absorber plate, heat exchanger plate, glazing, and heated air agree closely with experimental data to within 10, 6, 8, and 10 °C, respectively. Maximum predicted cumulative useful and overall efficiencies of the system are within the ranges 2.5–13 and 7.5–18%, respectively. Correlations of the predicted efficiencies are presented.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/S0960-1481(03)00071-5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>air flow ; Applied sciences ; Containers ; convection ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Flat plate collector ; Flow rates ; Heat exchangers ; Heating systems ; Irradiation ; Natural energy ; Passive air heater ; Phase change material ; Q1 ; Renewable energy ; solar collectors ; Solar energy ; Solar thermal conversion ; Storage ; Temperature ; Thermal analysis</subject><ispartof>Renewable energy, 2003-11, Vol.28 (14), p.2269-2299</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-33a99ead1068f575f92bb9d3671c33e292fc6b6f38eaf7cafe94b0817537f50b3</citedby><cites>FETCH-LOGICAL-c399t-33a99ead1068f575f92bb9d3671c33e292fc6b6f38eaf7cafe94b0817537f50b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0960-1481(03)00071-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14928897$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Enibe, S.O.</creatorcontrib><title>Thermal analysis of a natural circulation solar air heater with phase change material energy storage</title><title>Renewable energy</title><description>The transient thermal analysis of a natural convection solar air heater is presented. The heater consists of a single-glazed flat plate solar collector integrated with a paraffin type phase change material (PCM) energy storage subsystem and a rectangular enclosure which serves as the working chamber. The PCM is prepared in modules, with the modules equispaced across the absorber plate. The underside of the absorber plate, together with the vertical sides of the PCM module container, serve as air heating vanes. Air flow through the system is by natural convection. Energy balance equations are developed for each major component of the heater and linked with heat and mass balance equations for the heated air flowing through the system. The airflow rate is determined by balancing the buoyancy head resulting from thermally induced density differences and the friction head due to various flow resistances. The predicted performance of the system is compared with experimental data under daytime no-load conditions over the ambient temperature range of 19–41 °C and daily global irradiation of 4.9–19.9 MJ m –2. Predicted temperatures at specific locations on the absorber plate, heat exchanger plate, glazing, and heated air agree closely with experimental data to within 10, 6, 8, and 10 °C, respectively. Maximum predicted cumulative useful and overall efficiencies of the system are within the ranges 2.5–13 and 7.5–18%, respectively. Correlations of the predicted efficiencies are presented.</description><subject>air flow</subject><subject>Applied sciences</subject><subject>Containers</subject><subject>convection</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Flat plate collector</subject><subject>Flow rates</subject><subject>Heat exchangers</subject><subject>Heating systems</subject><subject>Irradiation</subject><subject>Natural energy</subject><subject>Passive air heater</subject><subject>Phase change material</subject><subject>Q1</subject><subject>Renewable energy</subject><subject>solar collectors</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Storage</subject><subject>Temperature</subject><subject>Thermal analysis</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QciNohfVpGma5kpk-AUDL5zX4TQ9WSNdO5NO2b-320Qvd3Xg8Lzn4yHknLMbznh--8Z0zhKeFfyKiWvGmOKJPCAjXiidsLxID8noDzkmJzF-MMZlobIRqWY1hgU0FFpo1tFH2jkKtIV-FYau9cGuGuh919LYNRAo-EBrhB4D_fZ9TZc1RKS2hnaOdLHp-yGHLYb5msa-CzDHU3LkoIl49lvH5P3xYTZ5TqavTy-T-2lihdZ9IgRojVDx4WYnlXQ6LUtdiVxxKwSmOnU2L3MnCgSnLDjUWckKrqRQTrJSjMnlbu4ydJ8rjL1Z-GixaaDFbhUN12p4PGP7wSzPtZTZAModaEMXY0BnlsEvIKwNZ2Yj32zlm41Zw4TZyjdyyF38LoBooXEBWuvjfzjTaVFoNXB3Ow4HLV8eg4nWY2ux8gFtb6rO79n0A5_Bmc8</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Enibe, S.O.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20031101</creationdate><title>Thermal analysis of a natural circulation solar air heater with phase change material energy storage</title><author>Enibe, S.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-33a99ead1068f575f92bb9d3671c33e292fc6b6f38eaf7cafe94b0817537f50b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>air flow</topic><topic>Applied sciences</topic><topic>Containers</topic><topic>convection</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Flat plate collector</topic><topic>Flow rates</topic><topic>Heat exchangers</topic><topic>Heating systems</topic><topic>Irradiation</topic><topic>Natural energy</topic><topic>Passive air heater</topic><topic>Phase change material</topic><topic>Q1</topic><topic>Renewable energy</topic><topic>solar collectors</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Storage</topic><topic>Temperature</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enibe, S.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enibe, S.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal analysis of a natural circulation solar air heater with phase change material energy storage</atitle><jtitle>Renewable energy</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>28</volume><issue>14</issue><spage>2269</spage><epage>2299</epage><pages>2269-2299</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>The transient thermal analysis of a natural convection solar air heater is presented. The heater consists of a single-glazed flat plate solar collector integrated with a paraffin type phase change material (PCM) energy storage subsystem and a rectangular enclosure which serves as the working chamber. The PCM is prepared in modules, with the modules equispaced across the absorber plate. The underside of the absorber plate, together with the vertical sides of the PCM module container, serve as air heating vanes. Air flow through the system is by natural convection. Energy balance equations are developed for each major component of the heater and linked with heat and mass balance equations for the heated air flowing through the system. The airflow rate is determined by balancing the buoyancy head resulting from thermally induced density differences and the friction head due to various flow resistances. The predicted performance of the system is compared with experimental data under daytime no-load conditions over the ambient temperature range of 19–41 °C and daily global irradiation of 4.9–19.9 MJ m –2. Predicted temperatures at specific locations on the absorber plate, heat exchanger plate, glazing, and heated air agree closely with experimental data to within 10, 6, 8, and 10 °C, respectively. Maximum predicted cumulative useful and overall efficiencies of the system are within the ranges 2.5–13 and 7.5–18%, respectively. Correlations of the predicted efficiencies are presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0960-1481(03)00071-5</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2003-11, Vol.28 (14), p.2269-2299
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_19700140
source Elsevier ScienceDirect Journals
subjects air flow
Applied sciences
Containers
convection
Energy
Equipments, installations and applications
Exact sciences and technology
Flat plate collector
Flow rates
Heat exchangers
Heating systems
Irradiation
Natural energy
Passive air heater
Phase change material
Q1
Renewable energy
solar collectors
Solar energy
Solar thermal conversion
Storage
Temperature
Thermal analysis
title Thermal analysis of a natural circulation solar air heater with phase change material energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20analysis%20of%20a%20natural%20circulation%20solar%20air%20heater%20with%20phase%20change%20material%20energy%20storage&rft.jtitle=Renewable%20energy&rft.au=Enibe,%20S.O.&rft.date=2003-11-01&rft.volume=28&rft.issue=14&rft.spage=2269&rft.epage=2299&rft.pages=2269-2299&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/S0960-1481(03)00071-5&rft_dat=%3Cproquest_cross%3E5665315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14669554&rft_id=info:pmid/&rft_els_id=S0960148103000715&rfr_iscdi=true