Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet
Scope A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is...
Gespeichert in:
Veröffentlicht in: | Molecular nutrition & food research 2018-02, Vol.62 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Molecular nutrition & food research |
container_volume | 62 |
creator | Si, Xu Shang, Wenting Zhou, Zhongkai Strappe, Padraig Wang, Bing Bird, Anthony Blanchard, Chris |
description | Scope
A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats.
Methods and results
The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity.
Conclusion
Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA.
The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity. |
doi_str_mv | 10.1002/mnfr.201700670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1969936725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1969936725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIRHi1lGglGpqEfdreEhISIhFAPGprbY-TjfwA7xrkjk_gG_kSNgqkoKGaq9GZq9FB6JiSASWEnZdV3gwYoSEhQUi20B4NKO8Lyvn2JjPZQ_vWLgnhlAm-i3pM0TCSSu2hdNI6PDNpUyemLuHr43NaZW0KGX5cmNzhOscXKTjtALsaX7aua1b5vrbGmTcoOjzTlZ6DxaPO-gprLDYVvjbzBR5rh0cG3CHayXVh4ehnHqDn8dXT8Lp_czeZDi9u-qngIuiHPJSKRBFomuQki4gCv-ehyBIqWJj6rWQ8yBlELBI6kAqAJhkjUkZJQoEfoLN170tTv7ZgXVwam0JR6Arq1sZUBUrxIGTSo6d_0GXdNpX_zlNKEqGYiDw1WFNej7UN5PFLY0rddDEl8Up_vNIfb_T7g5Of2jYpIdvgv749INbAuymg-6cunt2OHzilAf8G65iP8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995049248</pqid></control><display><type>article</type><title>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Si, Xu ; Shang, Wenting ; Zhou, Zhongkai ; Strappe, Padraig ; Wang, Bing ; Bird, Anthony ; Blanchard, Chris</creator><creatorcontrib>Si, Xu ; Shang, Wenting ; Zhou, Zhongkai ; Strappe, Padraig ; Wang, Bing ; Bird, Anthony ; Blanchard, Chris</creatorcontrib><description>Scope
A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats.
Methods and results
The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity.
Conclusion
Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA.
The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201700670</identifier><identifier>PMID: 29178599</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Acetates - metabolism ; Acetates - pharmacology ; Acetic acid ; Animals ; Biosynthesis ; Butyrates - metabolism ; Conversion ; Diet ; Diet, High-Fat - adverse effects ; Dysbacteriosis ; Dysbiosis - diet therapy ; Dysbiosis - microbiology ; Energy harvesting ; Feces - microbiology ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal Microbiome - physiology ; Gene expression ; gut microbiome ; High fat diet ; hyperinsulinism ; Insulin ; Intestinal microflora ; Intestine, Large - drug effects ; Intestine, Large - metabolism ; lipidomics ; Lipogenesis ; Male ; Metabolic syndrome ; Metabolism ; Metabolites ; Microbiomes ; Microbiota ; Obesity ; Obesity - diet therapy ; Obesity - etiology ; Obesity - microbiology ; Rats ; Rats, Wistar ; Rodents ; Secretion ; Signal transduction ; Signaling ; Starch ; Starch - chemistry ; Starch - pharmacology ; Substrates</subject><ispartof>Molecular nutrition & food research, 2018-02, Vol.62 (3), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</citedby><cites>FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</cites><orcidid>0000-0003-1918-413X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201700670$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201700670$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29178599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Si, Xu</creatorcontrib><creatorcontrib>Shang, Wenting</creatorcontrib><creatorcontrib>Zhou, Zhongkai</creatorcontrib><creatorcontrib>Strappe, Padraig</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Bird, Anthony</creatorcontrib><creatorcontrib>Blanchard, Chris</creatorcontrib><title>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</title><title>Molecular nutrition & food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope
A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats.
Methods and results
The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity.
Conclusion
Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA.
The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.</description><subject>Accumulation</subject><subject>Acetates - metabolism</subject><subject>Acetates - pharmacology</subject><subject>Acetic acid</subject><subject>Animals</subject><subject>Biosynthesis</subject><subject>Butyrates - metabolism</subject><subject>Conversion</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - diet therapy</subject><subject>Dysbiosis - microbiology</subject><subject>Energy harvesting</subject><subject>Feces - microbiology</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gene expression</subject><subject>gut microbiome</subject><subject>High fat diet</subject><subject>hyperinsulinism</subject><subject>Insulin</subject><subject>Intestinal microflora</subject><subject>Intestine, Large - drug effects</subject><subject>Intestine, Large - metabolism</subject><subject>lipidomics</subject><subject>Lipogenesis</subject><subject>Male</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Obesity</subject><subject>Obesity - diet therapy</subject><subject>Obesity - etiology</subject><subject>Obesity - microbiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Starch</subject><subject>Starch - chemistry</subject><subject>Starch - pharmacology</subject><subject>Substrates</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLtOw0AQRVcIRHi1lGglGpqEfdreEhISIhFAPGprbY-TjfwA7xrkjk_gG_kSNgqkoKGaq9GZq9FB6JiSASWEnZdV3gwYoSEhQUi20B4NKO8Lyvn2JjPZQ_vWLgnhlAm-i3pM0TCSSu2hdNI6PDNpUyemLuHr43NaZW0KGX5cmNzhOscXKTjtALsaX7aua1b5vrbGmTcoOjzTlZ6DxaPO-gprLDYVvjbzBR5rh0cG3CHayXVh4ehnHqDn8dXT8Lp_czeZDi9u-qngIuiHPJSKRBFomuQki4gCv-ehyBIqWJj6rWQ8yBlELBI6kAqAJhkjUkZJQoEfoLN170tTv7ZgXVwam0JR6Arq1sZUBUrxIGTSo6d_0GXdNpX_zlNKEqGYiDw1WFNej7UN5PFLY0rddDEl8Up_vNIfb_T7g5Of2jYpIdvgv749INbAuymg-6cunt2OHzilAf8G65iP8g</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Si, Xu</creator><creator>Shang, Wenting</creator><creator>Zhou, Zhongkai</creator><creator>Strappe, Padraig</creator><creator>Wang, Bing</creator><creator>Bird, Anthony</creator><creator>Blanchard, Chris</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1918-413X</orcidid></search><sort><creationdate>201802</creationdate><title>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</title><author>Si, Xu ; Shang, Wenting ; Zhou, Zhongkai ; Strappe, Padraig ; Wang, Bing ; Bird, Anthony ; Blanchard, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Acetates - metabolism</topic><topic>Acetates - pharmacology</topic><topic>Acetic acid</topic><topic>Animals</topic><topic>Biosynthesis</topic><topic>Butyrates - metabolism</topic><topic>Conversion</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - diet therapy</topic><topic>Dysbiosis - microbiology</topic><topic>Energy harvesting</topic><topic>Feces - microbiology</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gene expression</topic><topic>gut microbiome</topic><topic>High fat diet</topic><topic>hyperinsulinism</topic><topic>Insulin</topic><topic>Intestinal microflora</topic><topic>Intestine, Large - drug effects</topic><topic>Intestine, Large - metabolism</topic><topic>lipidomics</topic><topic>Lipogenesis</topic><topic>Male</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Obesity</topic><topic>Obesity - diet therapy</topic><topic>Obesity - etiology</topic><topic>Obesity - microbiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Starch</topic><topic>Starch - chemistry</topic><topic>Starch - pharmacology</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Xu</creatorcontrib><creatorcontrib>Shang, Wenting</creatorcontrib><creatorcontrib>Zhou, Zhongkai</creatorcontrib><creatorcontrib>Strappe, Padraig</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Bird, Anthony</creatorcontrib><creatorcontrib>Blanchard, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular nutrition & food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Xu</au><au>Shang, Wenting</au><au>Zhou, Zhongkai</au><au>Strappe, Padraig</au><au>Wang, Bing</au><au>Bird, Anthony</au><au>Blanchard, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</atitle><jtitle>Molecular nutrition & food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2018-02</date><risdate>2018</risdate><volume>62</volume><issue>3</issue><epage>n/a</epage><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>Scope
A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats.
Methods and results
The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity.
Conclusion
Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA.
The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29178599</pmid><doi>10.1002/mnfr.201700670</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1918-413X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4125 |
ispartof | Molecular nutrition & food research, 2018-02, Vol.62 (3), p.n/a |
issn | 1613-4125 1613-4133 |
language | eng |
recordid | cdi_proquest_miscellaneous_1969936725 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Accumulation Acetates - metabolism Acetates - pharmacology Acetic acid Animals Biosynthesis Butyrates - metabolism Conversion Diet Diet, High-Fat - adverse effects Dysbacteriosis Dysbiosis - diet therapy Dysbiosis - microbiology Energy harvesting Feces - microbiology Gastrointestinal Microbiome - drug effects Gastrointestinal Microbiome - physiology Gene expression gut microbiome High fat diet hyperinsulinism Insulin Intestinal microflora Intestine, Large - drug effects Intestine, Large - metabolism lipidomics Lipogenesis Male Metabolic syndrome Metabolism Metabolites Microbiomes Microbiota Obesity Obesity - diet therapy Obesity - etiology Obesity - microbiology Rats Rats, Wistar Rodents Secretion Signal transduction Signaling Starch Starch - chemistry Starch - pharmacology Substrates |
title | Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20Microbiome%E2%80%90Induced%20Shift%20of%20Acetate%20to%20Butyrate%20Positively%20Manages%20Dysbiosis%20in%20High%20Fat%20Diet&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Si,%20Xu&rft.date=2018-02&rft.volume=62&rft.issue=3&rft.epage=n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201700670&rft_dat=%3Cproquest_cross%3E1969936725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995049248&rft_id=info:pmid/29178599&rfr_iscdi=true |