Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet

Scope A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2018-02, Vol.62 (3), p.n/a
Hauptverfasser: Si, Xu, Shang, Wenting, Zhou, Zhongkai, Strappe, Padraig, Wang, Bing, Bird, Anthony, Blanchard, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Molecular nutrition & food research
container_volume 62
creator Si, Xu
Shang, Wenting
Zhou, Zhongkai
Strappe, Padraig
Wang, Bing
Bird, Anthony
Blanchard, Chris
description Scope A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats. Methods and results The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity. Conclusion Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA. The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.
doi_str_mv 10.1002/mnfr.201700670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1969936725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1969936725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIRHi1lGglGpqEfdreEhISIhFAPGprbY-TjfwA7xrkjk_gG_kSNgqkoKGaq9GZq9FB6JiSASWEnZdV3gwYoSEhQUi20B4NKO8Lyvn2JjPZQ_vWLgnhlAm-i3pM0TCSSu2hdNI6PDNpUyemLuHr43NaZW0KGX5cmNzhOscXKTjtALsaX7aua1b5vrbGmTcoOjzTlZ6DxaPO-gprLDYVvjbzBR5rh0cG3CHayXVh4ehnHqDn8dXT8Lp_czeZDi9u-qngIuiHPJSKRBFomuQki4gCv-ehyBIqWJj6rWQ8yBlELBI6kAqAJhkjUkZJQoEfoLN170tTv7ZgXVwam0JR6Arq1sZUBUrxIGTSo6d_0GXdNpX_zlNKEqGYiDw1WFNej7UN5PFLY0rddDEl8Up_vNIfb_T7g5Of2jYpIdvgv749INbAuymg-6cunt2OHzilAf8G65iP8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995049248</pqid></control><display><type>article</type><title>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Si, Xu ; Shang, Wenting ; Zhou, Zhongkai ; Strappe, Padraig ; Wang, Bing ; Bird, Anthony ; Blanchard, Chris</creator><creatorcontrib>Si, Xu ; Shang, Wenting ; Zhou, Zhongkai ; Strappe, Padraig ; Wang, Bing ; Bird, Anthony ; Blanchard, Chris</creatorcontrib><description>Scope A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats. Methods and results The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity. Conclusion Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA. The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201700670</identifier><identifier>PMID: 29178599</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Acetates - metabolism ; Acetates - pharmacology ; Acetic acid ; Animals ; Biosynthesis ; Butyrates - metabolism ; Conversion ; Diet ; Diet, High-Fat - adverse effects ; Dysbacteriosis ; Dysbiosis - diet therapy ; Dysbiosis - microbiology ; Energy harvesting ; Feces - microbiology ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal Microbiome - physiology ; Gene expression ; gut microbiome ; High fat diet ; hyperinsulinism ; Insulin ; Intestinal microflora ; Intestine, Large - drug effects ; Intestine, Large - metabolism ; lipidomics ; Lipogenesis ; Male ; Metabolic syndrome ; Metabolism ; Metabolites ; Microbiomes ; Microbiota ; Obesity ; Obesity - diet therapy ; Obesity - etiology ; Obesity - microbiology ; Rats ; Rats, Wistar ; Rodents ; Secretion ; Signal transduction ; Signaling ; Starch ; Starch - chemistry ; Starch - pharmacology ; Substrates</subject><ispartof>Molecular nutrition &amp; food research, 2018-02, Vol.62 (3), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</citedby><cites>FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</cites><orcidid>0000-0003-1918-413X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201700670$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201700670$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29178599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Si, Xu</creatorcontrib><creatorcontrib>Shang, Wenting</creatorcontrib><creatorcontrib>Zhou, Zhongkai</creatorcontrib><creatorcontrib>Strappe, Padraig</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Bird, Anthony</creatorcontrib><creatorcontrib>Blanchard, Chris</creatorcontrib><title>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</title><title>Molecular nutrition &amp; food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats. Methods and results The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity. Conclusion Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA. The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.</description><subject>Accumulation</subject><subject>Acetates - metabolism</subject><subject>Acetates - pharmacology</subject><subject>Acetic acid</subject><subject>Animals</subject><subject>Biosynthesis</subject><subject>Butyrates - metabolism</subject><subject>Conversion</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - diet therapy</subject><subject>Dysbiosis - microbiology</subject><subject>Energy harvesting</subject><subject>Feces - microbiology</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gene expression</subject><subject>gut microbiome</subject><subject>High fat diet</subject><subject>hyperinsulinism</subject><subject>Insulin</subject><subject>Intestinal microflora</subject><subject>Intestine, Large - drug effects</subject><subject>Intestine, Large - metabolism</subject><subject>lipidomics</subject><subject>Lipogenesis</subject><subject>Male</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Obesity</subject><subject>Obesity - diet therapy</subject><subject>Obesity - etiology</subject><subject>Obesity - microbiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Starch</subject><subject>Starch - chemistry</subject><subject>Starch - pharmacology</subject><subject>Substrates</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLtOw0AQRVcIRHi1lGglGpqEfdreEhISIhFAPGprbY-TjfwA7xrkjk_gG_kSNgqkoKGaq9GZq9FB6JiSASWEnZdV3gwYoSEhQUi20B4NKO8Lyvn2JjPZQ_vWLgnhlAm-i3pM0TCSSu2hdNI6PDNpUyemLuHr43NaZW0KGX5cmNzhOscXKTjtALsaX7aua1b5vrbGmTcoOjzTlZ6DxaPO-gprLDYVvjbzBR5rh0cG3CHayXVh4ehnHqDn8dXT8Lp_czeZDi9u-qngIuiHPJSKRBFomuQki4gCv-ehyBIqWJj6rWQ8yBlELBI6kAqAJhkjUkZJQoEfoLN170tTv7ZgXVwam0JR6Arq1sZUBUrxIGTSo6d_0GXdNpX_zlNKEqGYiDw1WFNej7UN5PFLY0rddDEl8Up_vNIfb_T7g5Of2jYpIdvgv749INbAuymg-6cunt2OHzilAf8G65iP8g</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Si, Xu</creator><creator>Shang, Wenting</creator><creator>Zhou, Zhongkai</creator><creator>Strappe, Padraig</creator><creator>Wang, Bing</creator><creator>Bird, Anthony</creator><creator>Blanchard, Chris</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1918-413X</orcidid></search><sort><creationdate>201802</creationdate><title>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</title><author>Si, Xu ; Shang, Wenting ; Zhou, Zhongkai ; Strappe, Padraig ; Wang, Bing ; Bird, Anthony ; Blanchard, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4346-73759088ea1bf0d809e434374db1427c1bf5236f2e8284a659ee1bd20558bb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Acetates - metabolism</topic><topic>Acetates - pharmacology</topic><topic>Acetic acid</topic><topic>Animals</topic><topic>Biosynthesis</topic><topic>Butyrates - metabolism</topic><topic>Conversion</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - diet therapy</topic><topic>Dysbiosis - microbiology</topic><topic>Energy harvesting</topic><topic>Feces - microbiology</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gene expression</topic><topic>gut microbiome</topic><topic>High fat diet</topic><topic>hyperinsulinism</topic><topic>Insulin</topic><topic>Intestinal microflora</topic><topic>Intestine, Large - drug effects</topic><topic>Intestine, Large - metabolism</topic><topic>lipidomics</topic><topic>Lipogenesis</topic><topic>Male</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Obesity</topic><topic>Obesity - diet therapy</topic><topic>Obesity - etiology</topic><topic>Obesity - microbiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Starch</topic><topic>Starch - chemistry</topic><topic>Starch - pharmacology</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Xu</creatorcontrib><creatorcontrib>Shang, Wenting</creatorcontrib><creatorcontrib>Zhou, Zhongkai</creatorcontrib><creatorcontrib>Strappe, Padraig</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Bird, Anthony</creatorcontrib><creatorcontrib>Blanchard, Chris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Xu</au><au>Shang, Wenting</au><au>Zhou, Zhongkai</au><au>Strappe, Padraig</au><au>Wang, Bing</au><au>Bird, Anthony</au><au>Blanchard, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2018-02</date><risdate>2018</risdate><volume>62</volume><issue>3</issue><epage>n/a</epage><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>Scope A recent study revealed that the accumulation of gut microbiota‐produced acetate (GMPA) led to insulin over‐secretion and obesity symptom. To further develop this scientific point, the effect of resistant starch (RS) or exogenous acetate carried by RS (RSA) in the gut on metabolic syndrome is investigated using diet‐induced obese rats. Methods and results The metabonomics analysis shows that the gut of rats in the RSA group generate more butyrate in both serum and feces rather than acetate compared to the rats in RS group, indicating the conversion among metabolites, in particular from acetate to butyrate via gut microbiota. Consistently, the gut microbiome uses acetate as a substrate to produce butyrate, such as Coprococcus, Faecalibacterium, Roseburia, and Eubacterium and was highly promoted in RSA group, which further supports the metabolic conversion. This is the first report to reveal the accumulation of gut microbiota‐produced butyrate (GMPB) but not GMPA significantly enriched AMPK signaling pathway with reduced expression of lipogenesis‐associated genes for suppressing sphingosines and ceramides biosynthesis to trigger insulin sensitivity. Conclusion Gut microbiome profile and lipogenesis pathway are regulated by GMPB, which substantially influences energy harvesting in the gut from patterns opposed to GMPA. The image depicts a model of gut microbial conversion of acetate into butyrate for improving insulin sensitivity and attenuating obesity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29178599</pmid><doi>10.1002/mnfr.201700670</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1918-413X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2018-02, Vol.62 (3), p.n/a
issn 1613-4125
1613-4133
language eng
recordid cdi_proquest_miscellaneous_1969936725
source MEDLINE; Wiley Online Library All Journals
subjects Accumulation
Acetates - metabolism
Acetates - pharmacology
Acetic acid
Animals
Biosynthesis
Butyrates - metabolism
Conversion
Diet
Diet, High-Fat - adverse effects
Dysbacteriosis
Dysbiosis - diet therapy
Dysbiosis - microbiology
Energy harvesting
Feces - microbiology
Gastrointestinal Microbiome - drug effects
Gastrointestinal Microbiome - physiology
Gene expression
gut microbiome
High fat diet
hyperinsulinism
Insulin
Intestinal microflora
Intestine, Large - drug effects
Intestine, Large - metabolism
lipidomics
Lipogenesis
Male
Metabolic syndrome
Metabolism
Metabolites
Microbiomes
Microbiota
Obesity
Obesity - diet therapy
Obesity - etiology
Obesity - microbiology
Rats
Rats, Wistar
Rodents
Secretion
Signal transduction
Signaling
Starch
Starch - chemistry
Starch - pharmacology
Substrates
title Gut Microbiome‐Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gut%20Microbiome%E2%80%90Induced%20Shift%20of%20Acetate%20to%20Butyrate%20Positively%20Manages%20Dysbiosis%20in%20High%20Fat%20Diet&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Si,%20Xu&rft.date=2018-02&rft.volume=62&rft.issue=3&rft.epage=n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201700670&rft_dat=%3Cproquest_cross%3E1969936725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995049248&rft_id=info:pmid/29178599&rfr_iscdi=true