Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant

The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2018-03, Vol.29 (3), p.748-760
Hauptverfasser: Van Herck, Simon, Van Hoecke, Lien, Louage, Benoit, Lybaert, Lien, De Coen, Ruben, Kasmi, Sabah, Esser-Kahn, Aaron P, David, Sunil A, Nuhn, Lutz, Schepens, Bert, Saelens, Xavier, De Geest, Bruno G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 3
container_start_page 748
container_title Bioconjugate chemistry
container_volume 29
creator Van Herck, Simon
Van Hoecke, Lien
Louage, Benoit
Lybaert, Lien
De Coen, Ruben
Kasmi, Sabah
Esser-Kahn, Aaron P
David, Sunil A
Nuhn, Lutz
Schepens, Bert
Saelens, Xavier
De Geest, Bruno G
description The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with a problematic safety profile, amphotericin B (AmpB), a Food and Drug Administration approved antifungal drug, has recently been discovered to possess TLR-triggering activity. However, its poor aqueous solubility and cytotoxicity at elevated concentrations currently hampers its development as a vaccine adjuvant. We present a new class of transiently thermoresponsive polymers that, in their native state, have a phase-transition temperature below room temperature but gradually transform into fully soluble polymers through acetal hydrolysis at endosomal pH values. RAFT polymerization afforded well-defined block copolymers that self-assemble into micellar nanoparticles and efficiently encapsulate AmpB. Importantly, nanoencapsulation strongly reduced the cytotoxic effect of AmpB but maintained its TLR-triggering capacity. Studies in mice showed that AmpB-loaded nanoparticles can adjuvant an RSV vaccine candidate with almost equal potency as a highly immunogenic oil-in-water benchmark adjuvant.
doi_str_mv 10.1021/acs.bioconjchem.7b00641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1969936635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087731685</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-b25e3f49e51df4fcb16f2ad036bca5cbdc9b0e346e9d73854bdd18f930493aab3</originalsourceid><addsrcrecordid>eNqFkUuLFDEURoMozjj6FzTgxk21edUjy3aYUWFAwdZtyOOGTlOVtEnVQPvrTU-3g7hxlZvL-b4EDkJvKFlRwuh7bcvKhGRT3NktTKveENIJ-gRd0paRRgyUPa0zEbyhA2EX6EUpO0KIpAN7ji6YpD0T7XCJfm2yjiVAnMcD3mwhTylD2ae6uwe8tjDrEX9N42GCXLBPGX_THrCODt94D3Z-wNwUYihz1nNIESeP19N-m2bIwYaIP2BdsMY_tK23I71b7nWcX6JnXo8FXp3PK_T99mZz_am5-_Lx8_X6rtF8aOfGsBa4FxJa6rzw1tDOM-0I74zVrTXOSkOAiw6k62tCGOfo4CUnQnKtDb9C7069-5x-LlBmNYViYRx1hLQURWUnJe863lb07T_oLi051t8pRoa-57QbjlR_omxOpWTwap_DpPNBUaKOelTVo_7So856avL1uX8xE7jH3B8fFeAn4Njw-Pb_an8DZjuj1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087731685</pqid></control><display><type>article</type><title>Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Van Herck, Simon ; Van Hoecke, Lien ; Louage, Benoit ; Lybaert, Lien ; De Coen, Ruben ; Kasmi, Sabah ; Esser-Kahn, Aaron P ; David, Sunil A ; Nuhn, Lutz ; Schepens, Bert ; Saelens, Xavier ; De Geest, Bruno G</creator><creatorcontrib>Van Herck, Simon ; Van Hoecke, Lien ; Louage, Benoit ; Lybaert, Lien ; De Coen, Ruben ; Kasmi, Sabah ; Esser-Kahn, Aaron P ; David, Sunil A ; Nuhn, Lutz ; Schepens, Bert ; Saelens, Xavier ; De Geest, Bruno G</creatorcontrib><description>The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with a problematic safety profile, amphotericin B (AmpB), a Food and Drug Administration approved antifungal drug, has recently been discovered to possess TLR-triggering activity. However, its poor aqueous solubility and cytotoxicity at elevated concentrations currently hampers its development as a vaccine adjuvant. We present a new class of transiently thermoresponsive polymers that, in their native state, have a phase-transition temperature below room temperature but gradually transform into fully soluble polymers through acetal hydrolysis at endosomal pH values. RAFT polymerization afforded well-defined block copolymers that self-assemble into micellar nanoparticles and efficiently encapsulate AmpB. Importantly, nanoencapsulation strongly reduced the cytotoxic effect of AmpB but maintained its TLR-triggering capacity. Studies in mice showed that AmpB-loaded nanoparticles can adjuvant an RSV vaccine candidate with almost equal potency as a highly immunogenic oil-in-water benchmark adjuvant.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00641</identifier><identifier>PMID: 29172458</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetal copolymers ; Acetals - adverse effects ; Acetals - chemistry ; Addition polymerization ; Adjuvants ; Adjuvants, Immunologic - administration &amp; dosage ; Adjuvants, Immunologic - adverse effects ; Adjuvants, Immunologic - therapeutic use ; Amphotericin B ; Amphotericin B - administration &amp; dosage ; Amphotericin B - adverse effects ; Amphotericin B - therapeutic use ; Animals ; Antifungal agents ; Antifungal Agents - administration &amp; dosage ; Antifungal Agents - adverse effects ; Antifungal Agents - therapeutic use ; Block copolymers ; Cancer ; Cytotoxicity ; Delayed-Action Preparations - adverse effects ; Delayed-Action Preparations - chemistry ; Female ; Fungicides ; Immune response ; Immune system ; Immunogenicity ; Immunohistochemistry ; Mice, Inbred BALB C ; Nanoparticles ; Nanoparticles - adverse effects ; Nanoparticles - chemistry ; Phase transitions ; Polymer chemistry ; Polymerization ; Polymers ; Polymers - adverse effects ; Polymers - chemistry ; Proteins ; Receptors ; Respiratory Syncytial Virus Infections - prevention &amp; control ; Respiratory Syncytial Virus Vaccines - administration &amp; dosage ; Respiratory Syncytial Virus Vaccines - adverse effects ; Respiratory Syncytial Virus Vaccines - therapeutic use ; Temperature ; Thermodynamics ; Toll-like receptors ; Toll-Like Receptors - agonists ; Toll-Like Receptors - immunology ; Toxicity ; Transition Temperature ; Transition temperatures ; Vaccines</subject><ispartof>Bioconjugate chemistry, 2018-03, Vol.29 (3), p.748-760</ispartof><rights>Copyright American Chemical Society Mar 21, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-b25e3f49e51df4fcb16f2ad036bca5cbdc9b0e346e9d73854bdd18f930493aab3</citedby><cites>FETCH-LOGICAL-a385t-b25e3f49e51df4fcb16f2ad036bca5cbdc9b0e346e9d73854bdd18f930493aab3</cites><orcidid>0000-0003-1273-0951 ; 0000-0001-9826-6170 ; 0000-0003-1655-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.7b00641$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00641$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29172458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Herck, Simon</creatorcontrib><creatorcontrib>Van Hoecke, Lien</creatorcontrib><creatorcontrib>Louage, Benoit</creatorcontrib><creatorcontrib>Lybaert, Lien</creatorcontrib><creatorcontrib>De Coen, Ruben</creatorcontrib><creatorcontrib>Kasmi, Sabah</creatorcontrib><creatorcontrib>Esser-Kahn, Aaron P</creatorcontrib><creatorcontrib>David, Sunil A</creatorcontrib><creatorcontrib>Nuhn, Lutz</creatorcontrib><creatorcontrib>Schepens, Bert</creatorcontrib><creatorcontrib>Saelens, Xavier</creatorcontrib><creatorcontrib>De Geest, Bruno G</creatorcontrib><title>Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with a problematic safety profile, amphotericin B (AmpB), a Food and Drug Administration approved antifungal drug, has recently been discovered to possess TLR-triggering activity. However, its poor aqueous solubility and cytotoxicity at elevated concentrations currently hampers its development as a vaccine adjuvant. We present a new class of transiently thermoresponsive polymers that, in their native state, have a phase-transition temperature below room temperature but gradually transform into fully soluble polymers through acetal hydrolysis at endosomal pH values. RAFT polymerization afforded well-defined block copolymers that self-assemble into micellar nanoparticles and efficiently encapsulate AmpB. Importantly, nanoencapsulation strongly reduced the cytotoxic effect of AmpB but maintained its TLR-triggering capacity. Studies in mice showed that AmpB-loaded nanoparticles can adjuvant an RSV vaccine candidate with almost equal potency as a highly immunogenic oil-in-water benchmark adjuvant.</description><subject>Acetal copolymers</subject><subject>Acetals - adverse effects</subject><subject>Acetals - chemistry</subject><subject>Addition polymerization</subject><subject>Adjuvants</subject><subject>Adjuvants, Immunologic - administration &amp; dosage</subject><subject>Adjuvants, Immunologic - adverse effects</subject><subject>Adjuvants, Immunologic - therapeutic use</subject><subject>Amphotericin B</subject><subject>Amphotericin B - administration &amp; dosage</subject><subject>Amphotericin B - adverse effects</subject><subject>Amphotericin B - therapeutic use</subject><subject>Animals</subject><subject>Antifungal agents</subject><subject>Antifungal Agents - administration &amp; dosage</subject><subject>Antifungal Agents - adverse effects</subject><subject>Antifungal Agents - therapeutic use</subject><subject>Block copolymers</subject><subject>Cancer</subject><subject>Cytotoxicity</subject><subject>Delayed-Action Preparations - adverse effects</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Female</subject><subject>Fungicides</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunogenicity</subject><subject>Immunohistochemistry</subject><subject>Mice, Inbred BALB C</subject><subject>Nanoparticles</subject><subject>Nanoparticles - adverse effects</subject><subject>Nanoparticles - chemistry</subject><subject>Phase transitions</subject><subject>Polymer chemistry</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - adverse effects</subject><subject>Polymers - chemistry</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Respiratory Syncytial Virus Infections - prevention &amp; control</subject><subject>Respiratory Syncytial Virus Vaccines - administration &amp; dosage</subject><subject>Respiratory Syncytial Virus Vaccines - adverse effects</subject><subject>Respiratory Syncytial Virus Vaccines - therapeutic use</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Toll-like receptors</subject><subject>Toll-Like Receptors - agonists</subject><subject>Toll-Like Receptors - immunology</subject><subject>Toxicity</subject><subject>Transition Temperature</subject><subject>Transition temperatures</subject><subject>Vaccines</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEURoMozjj6FzTgxk21edUjy3aYUWFAwdZtyOOGTlOVtEnVQPvrTU-3g7hxlZvL-b4EDkJvKFlRwuh7bcvKhGRT3NktTKveENIJ-gRd0paRRgyUPa0zEbyhA2EX6EUpO0KIpAN7ji6YpD0T7XCJfm2yjiVAnMcD3mwhTylD2ae6uwe8tjDrEX9N42GCXLBPGX_THrCODt94D3Z-wNwUYihz1nNIESeP19N-m2bIwYaIP2BdsMY_tK23I71b7nWcX6JnXo8FXp3PK_T99mZz_am5-_Lx8_X6rtF8aOfGsBa4FxJa6rzw1tDOM-0I74zVrTXOSkOAiw6k62tCGOfo4CUnQnKtDb9C7069-5x-LlBmNYViYRx1hLQURWUnJe863lb07T_oLi051t8pRoa-57QbjlR_omxOpWTwap_DpPNBUaKOelTVo_7So856avL1uX8xE7jH3B8fFeAn4Njw-Pb_an8DZjuj1w</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Van Herck, Simon</creator><creator>Van Hoecke, Lien</creator><creator>Louage, Benoit</creator><creator>Lybaert, Lien</creator><creator>De Coen, Ruben</creator><creator>Kasmi, Sabah</creator><creator>Esser-Kahn, Aaron P</creator><creator>David, Sunil A</creator><creator>Nuhn, Lutz</creator><creator>Schepens, Bert</creator><creator>Saelens, Xavier</creator><creator>De Geest, Bruno G</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1273-0951</orcidid><orcidid>https://orcid.org/0000-0001-9826-6170</orcidid><orcidid>https://orcid.org/0000-0003-1655-4641</orcidid></search><sort><creationdate>20180321</creationdate><title>Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant</title><author>Van Herck, Simon ; Van Hoecke, Lien ; Louage, Benoit ; Lybaert, Lien ; De Coen, Ruben ; Kasmi, Sabah ; Esser-Kahn, Aaron P ; David, Sunil A ; Nuhn, Lutz ; Schepens, Bert ; Saelens, Xavier ; De Geest, Bruno G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-b25e3f49e51df4fcb16f2ad036bca5cbdc9b0e346e9d73854bdd18f930493aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetal copolymers</topic><topic>Acetals - adverse effects</topic><topic>Acetals - chemistry</topic><topic>Addition polymerization</topic><topic>Adjuvants</topic><topic>Adjuvants, Immunologic - administration &amp; dosage</topic><topic>Adjuvants, Immunologic - adverse effects</topic><topic>Adjuvants, Immunologic - therapeutic use</topic><topic>Amphotericin B</topic><topic>Amphotericin B - administration &amp; dosage</topic><topic>Amphotericin B - adverse effects</topic><topic>Amphotericin B - therapeutic use</topic><topic>Animals</topic><topic>Antifungal agents</topic><topic>Antifungal Agents - administration &amp; dosage</topic><topic>Antifungal Agents - adverse effects</topic><topic>Antifungal Agents - therapeutic use</topic><topic>Block copolymers</topic><topic>Cancer</topic><topic>Cytotoxicity</topic><topic>Delayed-Action Preparations - adverse effects</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Female</topic><topic>Fungicides</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunogenicity</topic><topic>Immunohistochemistry</topic><topic>Mice, Inbred BALB C</topic><topic>Nanoparticles</topic><topic>Nanoparticles - adverse effects</topic><topic>Nanoparticles - chemistry</topic><topic>Phase transitions</topic><topic>Polymer chemistry</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - adverse effects</topic><topic>Polymers - chemistry</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Respiratory Syncytial Virus Infections - prevention &amp; control</topic><topic>Respiratory Syncytial Virus Vaccines - administration &amp; dosage</topic><topic>Respiratory Syncytial Virus Vaccines - adverse effects</topic><topic>Respiratory Syncytial Virus Vaccines - therapeutic use</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Toll-like receptors</topic><topic>Toll-Like Receptors - agonists</topic><topic>Toll-Like Receptors - immunology</topic><topic>Toxicity</topic><topic>Transition Temperature</topic><topic>Transition temperatures</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Herck, Simon</creatorcontrib><creatorcontrib>Van Hoecke, Lien</creatorcontrib><creatorcontrib>Louage, Benoit</creatorcontrib><creatorcontrib>Lybaert, Lien</creatorcontrib><creatorcontrib>De Coen, Ruben</creatorcontrib><creatorcontrib>Kasmi, Sabah</creatorcontrib><creatorcontrib>Esser-Kahn, Aaron P</creatorcontrib><creatorcontrib>David, Sunil A</creatorcontrib><creatorcontrib>Nuhn, Lutz</creatorcontrib><creatorcontrib>Schepens, Bert</creatorcontrib><creatorcontrib>Saelens, Xavier</creatorcontrib><creatorcontrib>De Geest, Bruno G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Herck, Simon</au><au>Van Hoecke, Lien</au><au>Louage, Benoit</au><au>Lybaert, Lien</au><au>De Coen, Ruben</au><au>Kasmi, Sabah</au><au>Esser-Kahn, Aaron P</au><au>David, Sunil A</au><au>Nuhn, Lutz</au><au>Schepens, Bert</au><au>Saelens, Xavier</au><au>De Geest, Bruno G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>748</spage><epage>760</epage><pages>748-760</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with a problematic safety profile, amphotericin B (AmpB), a Food and Drug Administration approved antifungal drug, has recently been discovered to possess TLR-triggering activity. However, its poor aqueous solubility and cytotoxicity at elevated concentrations currently hampers its development as a vaccine adjuvant. We present a new class of transiently thermoresponsive polymers that, in their native state, have a phase-transition temperature below room temperature but gradually transform into fully soluble polymers through acetal hydrolysis at endosomal pH values. RAFT polymerization afforded well-defined block copolymers that self-assemble into micellar nanoparticles and efficiently encapsulate AmpB. Importantly, nanoencapsulation strongly reduced the cytotoxic effect of AmpB but maintained its TLR-triggering capacity. Studies in mice showed that AmpB-loaded nanoparticles can adjuvant an RSV vaccine candidate with almost equal potency as a highly immunogenic oil-in-water benchmark adjuvant.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29172458</pmid><doi>10.1021/acs.bioconjchem.7b00641</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1273-0951</orcidid><orcidid>https://orcid.org/0000-0001-9826-6170</orcidid><orcidid>https://orcid.org/0000-0003-1655-4641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2018-03, Vol.29 (3), p.748-760
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_miscellaneous_1969936635
source MEDLINE; American Chemical Society Journals
subjects Acetal copolymers
Acetals - adverse effects
Acetals - chemistry
Addition polymerization
Adjuvants
Adjuvants, Immunologic - administration & dosage
Adjuvants, Immunologic - adverse effects
Adjuvants, Immunologic - therapeutic use
Amphotericin B
Amphotericin B - administration & dosage
Amphotericin B - adverse effects
Amphotericin B - therapeutic use
Animals
Antifungal agents
Antifungal Agents - administration & dosage
Antifungal Agents - adverse effects
Antifungal Agents - therapeutic use
Block copolymers
Cancer
Cytotoxicity
Delayed-Action Preparations - adverse effects
Delayed-Action Preparations - chemistry
Female
Fungicides
Immune response
Immune system
Immunogenicity
Immunohistochemistry
Mice, Inbred BALB C
Nanoparticles
Nanoparticles - adverse effects
Nanoparticles - chemistry
Phase transitions
Polymer chemistry
Polymerization
Polymers
Polymers - adverse effects
Polymers - chemistry
Proteins
Receptors
Respiratory Syncytial Virus Infections - prevention & control
Respiratory Syncytial Virus Vaccines - administration & dosage
Respiratory Syncytial Virus Vaccines - adverse effects
Respiratory Syncytial Virus Vaccines - therapeutic use
Temperature
Thermodynamics
Toll-like receptors
Toll-Like Receptors - agonists
Toll-Like Receptors - immunology
Toxicity
Transition Temperature
Transition temperatures
Vaccines
title Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transiently%20Thermoresponsive%20Acetal%20Polymers%20for%20Safe%20and%20Effective%20Administration%20of%20Amphotericin%20B%20as%20a%20Vaccine%20Adjuvant&rft.jtitle=Bioconjugate%20chemistry&rft.au=Van%20Herck,%20Simon&rft.date=2018-03-21&rft.volume=29&rft.issue=3&rft.spage=748&rft.epage=760&rft.pages=748-760&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00641&rft_dat=%3Cproquest_cross%3E2087731685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087731685&rft_id=info:pmid/29172458&rfr_iscdi=true