Plating and stripping calcium in an organic electrolyte

Although multivalent cation batteries based on magnesium, calcium or aluminium are technologically attractive, the metal anode still represents a challenge. It is now demonstrated that significant quantities of calcium can be plated and stripped at room temperature with low polarization. There is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2018-01, Vol.17 (1), p.16-20
Hauptverfasser: Wang, Da, Gao, Xiangwen, Chen, Yuhui, Jin, Liyu, Kuss, Christian, Bruce, Peter G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 16
container_title Nature materials
container_volume 17
creator Wang, Da
Gao, Xiangwen
Chen, Yuhui
Jin, Liyu
Kuss, Christian
Bruce, Peter G.
description Although multivalent cation batteries based on magnesium, calcium or aluminium are technologically attractive, the metal anode still represents a challenge. It is now demonstrated that significant quantities of calcium can be plated and stripped at room temperature with low polarization. There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm −2 , and accompanied by significant side reactions 7 . Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm −2 at a rate of 1 mA cm −2 , with low polarization (∼100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH 2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH 4 ) 2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO 3 , Ca(OH) 2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH 2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.
doi_str_mv 10.1038/nmat5036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1969921537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1969921537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-679e17e323d61b92692ab9016d067f424bc461ddb6f5858af6c6a6ccc7a3bd13</originalsourceid><addsrcrecordid>eNpdkE1OwzAQhS0EoqUgcQIUiQ0sAh47GcdLVPEnVYJF95HjOFWqxAl2suhtOAsnw1XLj7qaGb1Pb2YeIZdA74Dy7N62akgpxyMyhURgnCDS430PwNiEnHm_ppRBmuIpmTAJGRVCTkn23qihtqtI2TLyg6v7fjtp1eh6bKPaBiHq3ErZWn99msbowXXNZjDn5KRSjTcX-zojy6fH5fwlXrw9v84fFrHmWTLEKKQBYTjjJUIhGUqmCkkBS4qiSlhS6AShLAus0izNVIUaFWqtheJFCXxGbna2ves-RuOHvK29Nk2jrOlGn4NEKcNbXAT0-gBdd6Oz4bhAiSy8C6n8M9Su896ZKu9d3Sq3yYHm2zDznzADerU3HIvWlL_gT3oBuN0BPkh2Zdy_jYdm3-N_fRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978779159</pqid></control><display><type>article</type><title>Plating and stripping calcium in an organic electrolyte</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Da ; Gao, Xiangwen ; Chen, Yuhui ; Jin, Liyu ; Kuss, Christian ; Bruce, Peter G.</creator><creatorcontrib>Wang, Da ; Gao, Xiangwen ; Chen, Yuhui ; Jin, Liyu ; Kuss, Christian ; Bruce, Peter G.</creatorcontrib><description>Although multivalent cation batteries based on magnesium, calcium or aluminium are technologically attractive, the metal anode still represents a challenge. It is now demonstrated that significant quantities of calcium can be plated and stripped at room temperature with low polarization. There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm −2 , and accompanied by significant side reactions 7 . Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm −2 at a rate of 1 mA cm −2 , with low polarization (∼100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH 2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH 4 ) 2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO 3 , Ca(OH) 2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH 2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat5036</identifier><identifier>PMID: 29180779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638/161/891 ; Alkoxides ; Aluminum ; Anodes ; Batteries ; Biomaterials ; Calcium aluminate ; Calcium carbonate ; Calcium hydroxide ; Condensed Matter Physics ; Electrochemistry ; Electrolytes ; High temperature ; letter ; Magnesium ; Materials Science ; Nanotechnology ; Nonaqueous electrolytes ; Optical and Electronic Materials ; Polarization ; Tetrahydrofuran</subject><ispartof>Nature materials, 2018-01, Vol.17 (1), p.16-20</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-679e17e323d61b92692ab9016d067f424bc461ddb6f5858af6c6a6ccc7a3bd13</citedby><cites>FETCH-LOGICAL-c384t-679e17e323d61b92692ab9016d067f424bc461ddb6f5858af6c6a6ccc7a3bd13</cites><orcidid>0000-0001-6748-3084 ; 0000-0003-1003-0855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat5036$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat5036$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29180779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Gao, Xiangwen</creatorcontrib><creatorcontrib>Chen, Yuhui</creatorcontrib><creatorcontrib>Jin, Liyu</creatorcontrib><creatorcontrib>Kuss, Christian</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><title>Plating and stripping calcium in an organic electrolyte</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Although multivalent cation batteries based on magnesium, calcium or aluminium are technologically attractive, the metal anode still represents a challenge. It is now demonstrated that significant quantities of calcium can be plated and stripped at room temperature with low polarization. There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm −2 , and accompanied by significant side reactions 7 . Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm −2 at a rate of 1 mA cm −2 , with low polarization (∼100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH 2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH 4 ) 2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO 3 , Ca(OH) 2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH 2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.</description><subject>639/301/299/891</subject><subject>639/638/161/891</subject><subject>Alkoxides</subject><subject>Aluminum</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Biomaterials</subject><subject>Calcium aluminate</subject><subject>Calcium carbonate</subject><subject>Calcium hydroxide</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>High temperature</subject><subject>letter</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nonaqueous electrolytes</subject><subject>Optical and Electronic Materials</subject><subject>Polarization</subject><subject>Tetrahydrofuran</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1OwzAQhS0EoqUgcQIUiQ0sAh47GcdLVPEnVYJF95HjOFWqxAl2suhtOAsnw1XLj7qaGb1Pb2YeIZdA74Dy7N62akgpxyMyhURgnCDS430PwNiEnHm_ppRBmuIpmTAJGRVCTkn23qihtqtI2TLyg6v7fjtp1eh6bKPaBiHq3ErZWn99msbowXXNZjDn5KRSjTcX-zojy6fH5fwlXrw9v84fFrHmWTLEKKQBYTjjJUIhGUqmCkkBS4qiSlhS6AShLAus0izNVIUaFWqtheJFCXxGbna2ves-RuOHvK29Nk2jrOlGn4NEKcNbXAT0-gBdd6Oz4bhAiSy8C6n8M9Su896ZKu9d3Sq3yYHm2zDznzADerU3HIvWlL_gT3oBuN0BPkh2Zdy_jYdm3-N_fRM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Da</creator><creator>Gao, Xiangwen</creator><creator>Chen, Yuhui</creator><creator>Jin, Liyu</creator><creator>Kuss, Christian</creator><creator>Bruce, Peter G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid><orcidid>https://orcid.org/0000-0003-1003-0855</orcidid></search><sort><creationdate>20180101</creationdate><title>Plating and stripping calcium in an organic electrolyte</title><author>Wang, Da ; Gao, Xiangwen ; Chen, Yuhui ; Jin, Liyu ; Kuss, Christian ; Bruce, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-679e17e323d61b92692ab9016d067f424bc461ddb6f5858af6c6a6ccc7a3bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/299/891</topic><topic>639/638/161/891</topic><topic>Alkoxides</topic><topic>Aluminum</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Biomaterials</topic><topic>Calcium aluminate</topic><topic>Calcium carbonate</topic><topic>Calcium hydroxide</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>High temperature</topic><topic>letter</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nonaqueous electrolytes</topic><topic>Optical and Electronic Materials</topic><topic>Polarization</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Gao, Xiangwen</creatorcontrib><creatorcontrib>Chen, Yuhui</creatorcontrib><creatorcontrib>Jin, Liyu</creatorcontrib><creatorcontrib>Kuss, Christian</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Da</au><au>Gao, Xiangwen</au><au>Chen, Yuhui</au><au>Jin, Liyu</au><au>Kuss, Christian</au><au>Bruce, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plating and stripping calcium in an organic electrolyte</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>17</volume><issue>1</issue><spage>16</spage><epage>20</epage><pages>16-20</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Although multivalent cation batteries based on magnesium, calcium or aluminium are technologically attractive, the metal anode still represents a challenge. It is now demonstrated that significant quantities of calcium can be plated and stripped at room temperature with low polarization. There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 . Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm −2 , and accompanied by significant side reactions 7 . Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm −2 at a rate of 1 mA cm −2 , with low polarization (∼100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH 2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH 4 ) 2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO 3 , Ca(OH) 2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH 2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29180779</pmid><doi>10.1038/nmat5036</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid><orcidid>https://orcid.org/0000-0003-1003-0855</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2018-01, Vol.17 (1), p.16-20
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1969921537
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/299/891
639/638/161/891
Alkoxides
Aluminum
Anodes
Batteries
Biomaterials
Calcium aluminate
Calcium carbonate
Calcium hydroxide
Condensed Matter Physics
Electrochemistry
Electrolytes
High temperature
letter
Magnesium
Materials Science
Nanotechnology
Nonaqueous electrolytes
Optical and Electronic Materials
Polarization
Tetrahydrofuran
title Plating and stripping calcium in an organic electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plating%20and%20stripping%20calcium%20in%20an%20organic%C2%A0electrolyte&rft.jtitle=Nature%20materials&rft.au=Wang,%20Da&rft.date=2018-01-01&rft.volume=17&rft.issue=1&rft.spage=16&rft.epage=20&rft.pages=16-20&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat5036&rft_dat=%3Cproquest_cross%3E1969921537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978779159&rft_id=info:pmid/29180779&rfr_iscdi=true