Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence

The hydrothermal vent zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2008-12, Vol.55 (12), p.1718-1726
Hauptverfasser: Pond, D.W., Fallick, A.E., Stevens, C.J., Morrison, D.J., Dixon, D.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1726
container_issue 12
container_start_page 1718
container_title Deep-sea research. Part I, Oceanographic research papers
container_volume 55
creator Pond, D.W.
Fallick, A.E.
Stevens, C.J.
Morrison, D.J.
Dixon, D.R.
description The hydrothermal vent zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of 20 : 5 ( n - 3 ) and 22 : 6 ( n - 3 ) in muscle and ovary tissues of T. cerberus were low and contained higher amounts of 20 : 5 ( n - 3 ) than 22 : 6 ( n - 3 ) . This is in contrast to most marine fish where 22 : 6 ( n - 3 ) typically dominates. Prey items include the limpet ( Lepetodrilus elevatus) and amphipods ( Halice hesmonectes and Ventiella sulfuris) and all contained PUFA dominated by 20 : 5 ( n - 3 ) in amounts likely to support the requirements of T. cerberus. δ C 13 values of 20 : 5 ( n - 3 ) in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of T. cerberus and more generally in terms of the evolution of vent taxa.
doi_str_mv 10.1016/j.dsr.2008.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19692943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967063708001593</els_id><sourcerecordid>1617330441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOO76A7wFQW_dVpLpfOhJFleFhb2o15BOqtkMPZ0xyQzMvzfNLHvYg6ei4HnfKh5C3jHoGTD5adeHknsOoHtQPYB8QTZMK9MBY-Yl2YCRqgMp1GvyppQdQAtp2JDpD-aKY3YV6XKsOdaYFhoX6mhAPHQFHX04h5zqA-a9m-kJl0rRp3IuFfef6a2r9Uydj4G6JdBS3TgjjSXVdECKpxhw8XhNXk1uLvj2cV6R37ffft386O7uv_-8-XrXeaGH2jkYOQ9aTRMX0qit8YxrCG3TbBSDVtpJAdPARqMMZ2FyW6G9ZBwHIYZhFFfk46X3kNPfI5Zq97F4nGe3YDoWy4w03GxFA98_A3fpmJf228pIs5USGsQukM-plIyTPeS4d_lsGdhVu93Zpt2u2i0o27S3zIfHYle8m6fsFh_LU5CDGbgU6wNfLhw2HaeI2RYfV1UhZvTVhhT_c-UfqV2XQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196694660</pqid></control><display><type>article</type><title>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</title><source>Elsevier ScienceDirect Journals</source><creator>Pond, D.W. ; Fallick, A.E. ; Stevens, C.J. ; Morrison, D.J. ; Dixon, D.R.</creator><creatorcontrib>Pond, D.W. ; Fallick, A.E. ; Stevens, C.J. ; Morrison, D.J. ; Dixon, D.R.</creatorcontrib><description>The hydrothermal vent zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of 20 : 5 ( n - 3 ) and 22 : 6 ( n - 3 ) in muscle and ovary tissues of T. cerberus were low and contained higher amounts of 20 : 5 ( n - 3 ) than 22 : 6 ( n - 3 ) . This is in contrast to most marine fish where 22 : 6 ( n - 3 ) typically dominates. Prey items include the limpet ( Lepetodrilus elevatus) and amphipods ( Halice hesmonectes and Ventiella sulfuris) and all contained PUFA dominated by 20 : 5 ( n - 3 ) in amounts likely to support the requirements of T. cerberus. δ C 13 values of 20 : 5 ( n - 3 ) in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of T. cerberus and more generally in terms of the evolution of vent taxa.</description><identifier>ISSN: 0967-0637</identifier><identifier>EISSN: 1879-0119</identifier><identifier>DOI: 10.1016/j.dsr.2008.07.006</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biological oceanography ; Carbon sequestration ; Cerberus ; Crustaceans ; Deep-sea ; Essential fatty acids ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Halice hesmonectes ; Hydrothermal vents ; Invertebrates ; Isotopes ; Lepetodrilus elevatus ; Marine ; Ocean bottom ; Particular ecosystems ; Sea water ecosystems ; Stable carbon isotope ; Synecology ; Thermarces cerberus ; Ventiella sulfuris</subject><ispartof>Deep-sea research. Part I, Oceanographic research papers, 2008-12, Vol.55 (12), p.1718-1726</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Dec 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</citedby><cites>FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0967063708001593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20952633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pond, D.W.</creatorcontrib><creatorcontrib>Fallick, A.E.</creatorcontrib><creatorcontrib>Stevens, C.J.</creatorcontrib><creatorcontrib>Morrison, D.J.</creatorcontrib><creatorcontrib>Dixon, D.R.</creatorcontrib><title>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</title><title>Deep-sea research. Part I, Oceanographic research papers</title><description>The hydrothermal vent zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of 20 : 5 ( n - 3 ) and 22 : 6 ( n - 3 ) in muscle and ovary tissues of T. cerberus were low and contained higher amounts of 20 : 5 ( n - 3 ) than 22 : 6 ( n - 3 ) . This is in contrast to most marine fish where 22 : 6 ( n - 3 ) typically dominates. Prey items include the limpet ( Lepetodrilus elevatus) and amphipods ( Halice hesmonectes and Ventiella sulfuris) and all contained PUFA dominated by 20 : 5 ( n - 3 ) in amounts likely to support the requirements of T. cerberus. δ C 13 values of 20 : 5 ( n - 3 ) in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of T. cerberus and more generally in terms of the evolution of vent taxa.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biological oceanography</subject><subject>Carbon sequestration</subject><subject>Cerberus</subject><subject>Crustaceans</subject><subject>Deep-sea</subject><subject>Essential fatty acids</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Halice hesmonectes</subject><subject>Hydrothermal vents</subject><subject>Invertebrates</subject><subject>Isotopes</subject><subject>Lepetodrilus elevatus</subject><subject>Marine</subject><subject>Ocean bottom</subject><subject>Particular ecosystems</subject><subject>Sea water ecosystems</subject><subject>Stable carbon isotope</subject><subject>Synecology</subject><subject>Thermarces cerberus</subject><subject>Ventiella sulfuris</subject><issn>0967-0637</issn><issn>1879-0119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOO76A7wFQW_dVpLpfOhJFleFhb2o15BOqtkMPZ0xyQzMvzfNLHvYg6ei4HnfKh5C3jHoGTD5adeHknsOoHtQPYB8QTZMK9MBY-Yl2YCRqgMp1GvyppQdQAtp2JDpD-aKY3YV6XKsOdaYFhoX6mhAPHQFHX04h5zqA-a9m-kJl0rRp3IuFfef6a2r9Uydj4G6JdBS3TgjjSXVdECKpxhw8XhNXk1uLvj2cV6R37ffft386O7uv_-8-XrXeaGH2jkYOQ9aTRMX0qit8YxrCG3TbBSDVtpJAdPARqMMZ2FyW6G9ZBwHIYZhFFfk46X3kNPfI5Zq97F4nGe3YDoWy4w03GxFA98_A3fpmJf228pIs5USGsQukM-plIyTPeS4d_lsGdhVu93Zpt2u2i0o27S3zIfHYle8m6fsFh_LU5CDGbgU6wNfLhw2HaeI2RYfV1UhZvTVhhT_c-UfqV2XQQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Pond, D.W.</creator><creator>Fallick, A.E.</creator><creator>Stevens, C.J.</creator><creator>Morrison, D.J.</creator><creator>Dixon, D.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20081201</creationdate><title>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</title><author>Pond, D.W. ; Fallick, A.E. ; Stevens, C.J. ; Morrison, D.J. ; Dixon, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biological oceanography</topic><topic>Carbon sequestration</topic><topic>Cerberus</topic><topic>Crustaceans</topic><topic>Deep-sea</topic><topic>Essential fatty acids</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Halice hesmonectes</topic><topic>Hydrothermal vents</topic><topic>Invertebrates</topic><topic>Isotopes</topic><topic>Lepetodrilus elevatus</topic><topic>Marine</topic><topic>Ocean bottom</topic><topic>Particular ecosystems</topic><topic>Sea water ecosystems</topic><topic>Stable carbon isotope</topic><topic>Synecology</topic><topic>Thermarces cerberus</topic><topic>Ventiella sulfuris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pond, D.W.</creatorcontrib><creatorcontrib>Fallick, A.E.</creatorcontrib><creatorcontrib>Stevens, C.J.</creatorcontrib><creatorcontrib>Morrison, D.J.</creatorcontrib><creatorcontrib>Dixon, D.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pond, D.W.</au><au>Fallick, A.E.</au><au>Stevens, C.J.</au><au>Morrison, D.J.</au><au>Dixon, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</atitle><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>55</volume><issue>12</issue><spage>1718</spage><epage>1726</epage><pages>1718-1726</pages><issn>0967-0637</issn><eissn>1879-0119</eissn><abstract>The hydrothermal vent zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of 20 : 5 ( n - 3 ) and 22 : 6 ( n - 3 ) in muscle and ovary tissues of T. cerberus were low and contained higher amounts of 20 : 5 ( n - 3 ) than 22 : 6 ( n - 3 ) . This is in contrast to most marine fish where 22 : 6 ( n - 3 ) typically dominates. Prey items include the limpet ( Lepetodrilus elevatus) and amphipods ( Halice hesmonectes and Ventiella sulfuris) and all contained PUFA dominated by 20 : 5 ( n - 3 ) in amounts likely to support the requirements of T. cerberus. δ C 13 values of 20 : 5 ( n - 3 ) in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of T. cerberus and more generally in terms of the evolution of vent taxa.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.dsr.2008.07.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0637
ispartof Deep-sea research. Part I, Oceanographic research papers, 2008-12, Vol.55 (12), p.1718-1726
issn 0967-0637
1879-0119
language eng
recordid cdi_proquest_miscellaneous_19692943
source Elsevier ScienceDirect Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Biological oceanography
Carbon sequestration
Cerberus
Crustaceans
Deep-sea
Essential fatty acids
Fatty acids
Fundamental and applied biological sciences. Psychology
Halice hesmonectes
Hydrothermal vents
Invertebrates
Isotopes
Lepetodrilus elevatus
Marine
Ocean bottom
Particular ecosystems
Sea water ecosystems
Stable carbon isotope
Synecology
Thermarces cerberus
Ventiella sulfuris
title Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertebrate%20nutrition%20in%20a%20deep-sea%20hydrothermal%20vent%20ecosystem:%20Fatty%20acid%20and%20stable%20isotope%20evidence&rft.jtitle=Deep-sea%20research.%20Part%20I,%20Oceanographic%20research%20papers&rft.au=Pond,%20D.W.&rft.date=2008-12-01&rft.volume=55&rft.issue=12&rft.spage=1718&rft.epage=1726&rft.pages=1718-1726&rft.issn=0967-0637&rft.eissn=1879-0119&rft_id=info:doi/10.1016/j.dsr.2008.07.006&rft_dat=%3Cproquest_cross%3E1617330441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196694660&rft_id=info:pmid/&rft_els_id=S0967063708001593&rfr_iscdi=true