Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence
The hydrothermal vent zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce po...
Gespeichert in:
Veröffentlicht in: | Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2008-12, Vol.55 (12), p.1718-1726 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1726 |
---|---|
container_issue | 12 |
container_start_page | 1718 |
container_title | Deep-sea research. Part I, Oceanographic research papers |
container_volume | 55 |
creator | Pond, D.W. Fallick, A.E. Stevens, C.J. Morrison, D.J. Dixon, D.R. |
description | The hydrothermal vent zoarcid fish
Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how
T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of
20
:
5
(
n
-
3
)
and
22
:
6
(
n
-
3
)
in muscle and ovary tissues of
T. cerberus were low and contained higher amounts of
20
:
5
(
n
-
3
)
than
22
:
6
(
n
-
3
)
. This is in contrast to most marine fish where
22
:
6
(
n
-
3
)
typically dominates. Prey items include the limpet (
Lepetodrilus elevatus) and amphipods (
Halice hesmonectes and
Ventiella sulfuris) and all contained PUFA dominated by
20
:
5
(
n
-
3
)
in amounts likely to support the requirements of
T. cerberus.
δ
C
13
values of
20
:
5
(
n
-
3
)
in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of
T. cerberus and more generally in terms of the evolution of vent taxa. |
doi_str_mv | 10.1016/j.dsr.2008.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19692943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967063708001593</els_id><sourcerecordid>1617330441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOO76A7wFQW_dVpLpfOhJFleFhb2o15BOqtkMPZ0xyQzMvzfNLHvYg6ei4HnfKh5C3jHoGTD5adeHknsOoHtQPYB8QTZMK9MBY-Yl2YCRqgMp1GvyppQdQAtp2JDpD-aKY3YV6XKsOdaYFhoX6mhAPHQFHX04h5zqA-a9m-kJl0rRp3IuFfef6a2r9Uydj4G6JdBS3TgjjSXVdECKpxhw8XhNXk1uLvj2cV6R37ffft386O7uv_-8-XrXeaGH2jkYOQ9aTRMX0qit8YxrCG3TbBSDVtpJAdPARqMMZ2FyW6G9ZBwHIYZhFFfk46X3kNPfI5Zq97F4nGe3YDoWy4w03GxFA98_A3fpmJf228pIs5USGsQukM-plIyTPeS4d_lsGdhVu93Zpt2u2i0o27S3zIfHYle8m6fsFh_LU5CDGbgU6wNfLhw2HaeI2RYfV1UhZvTVhhT_c-UfqV2XQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196694660</pqid></control><display><type>article</type><title>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</title><source>Elsevier ScienceDirect Journals</source><creator>Pond, D.W. ; Fallick, A.E. ; Stevens, C.J. ; Morrison, D.J. ; Dixon, D.R.</creator><creatorcontrib>Pond, D.W. ; Fallick, A.E. ; Stevens, C.J. ; Morrison, D.J. ; Dixon, D.R.</creatorcontrib><description>The hydrothermal vent zoarcid fish
Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how
T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of
20
:
5
(
n
-
3
)
and
22
:
6
(
n
-
3
)
in muscle and ovary tissues of
T. cerberus were low and contained higher amounts of
20
:
5
(
n
-
3
)
than
22
:
6
(
n
-
3
)
. This is in contrast to most marine fish where
22
:
6
(
n
-
3
)
typically dominates. Prey items include the limpet (
Lepetodrilus elevatus) and amphipods (
Halice hesmonectes and
Ventiella sulfuris) and all contained PUFA dominated by
20
:
5
(
n
-
3
)
in amounts likely to support the requirements of
T. cerberus.
δ
C
13
values of
20
:
5
(
n
-
3
)
in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of
T. cerberus and more generally in terms of the evolution of vent taxa.</description><identifier>ISSN: 0967-0637</identifier><identifier>EISSN: 1879-0119</identifier><identifier>DOI: 10.1016/j.dsr.2008.07.006</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biological oceanography ; Carbon sequestration ; Cerberus ; Crustaceans ; Deep-sea ; Essential fatty acids ; Fatty acids ; Fundamental and applied biological sciences. Psychology ; Halice hesmonectes ; Hydrothermal vents ; Invertebrates ; Isotopes ; Lepetodrilus elevatus ; Marine ; Ocean bottom ; Particular ecosystems ; Sea water ecosystems ; Stable carbon isotope ; Synecology ; Thermarces cerberus ; Ventiella sulfuris</subject><ispartof>Deep-sea research. Part I, Oceanographic research papers, 2008-12, Vol.55 (12), p.1718-1726</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Dec 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</citedby><cites>FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0967063708001593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20952633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pond, D.W.</creatorcontrib><creatorcontrib>Fallick, A.E.</creatorcontrib><creatorcontrib>Stevens, C.J.</creatorcontrib><creatorcontrib>Morrison, D.J.</creatorcontrib><creatorcontrib>Dixon, D.R.</creatorcontrib><title>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</title><title>Deep-sea research. Part I, Oceanographic research papers</title><description>The hydrothermal vent zoarcid fish
Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how
T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of
20
:
5
(
n
-
3
)
and
22
:
6
(
n
-
3
)
in muscle and ovary tissues of
T. cerberus were low and contained higher amounts of
20
:
5
(
n
-
3
)
than
22
:
6
(
n
-
3
)
. This is in contrast to most marine fish where
22
:
6
(
n
-
3
)
typically dominates. Prey items include the limpet (
Lepetodrilus elevatus) and amphipods (
Halice hesmonectes and
Ventiella sulfuris) and all contained PUFA dominated by
20
:
5
(
n
-
3
)
in amounts likely to support the requirements of
T. cerberus.
δ
C
13
values of
20
:
5
(
n
-
3
)
in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of
T. cerberus and more generally in terms of the evolution of vent taxa.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biological oceanography</subject><subject>Carbon sequestration</subject><subject>Cerberus</subject><subject>Crustaceans</subject><subject>Deep-sea</subject><subject>Essential fatty acids</subject><subject>Fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Halice hesmonectes</subject><subject>Hydrothermal vents</subject><subject>Invertebrates</subject><subject>Isotopes</subject><subject>Lepetodrilus elevatus</subject><subject>Marine</subject><subject>Ocean bottom</subject><subject>Particular ecosystems</subject><subject>Sea water ecosystems</subject><subject>Stable carbon isotope</subject><subject>Synecology</subject><subject>Thermarces cerberus</subject><subject>Ventiella sulfuris</subject><issn>0967-0637</issn><issn>1879-0119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOO76A7wFQW_dVpLpfOhJFleFhb2o15BOqtkMPZ0xyQzMvzfNLHvYg6ei4HnfKh5C3jHoGTD5adeHknsOoHtQPYB8QTZMK9MBY-Yl2YCRqgMp1GvyppQdQAtp2JDpD-aKY3YV6XKsOdaYFhoX6mhAPHQFHX04h5zqA-a9m-kJl0rRp3IuFfef6a2r9Uydj4G6JdBS3TgjjSXVdECKpxhw8XhNXk1uLvj2cV6R37ffft386O7uv_-8-XrXeaGH2jkYOQ9aTRMX0qit8YxrCG3TbBSDVtpJAdPARqMMZ2FyW6G9ZBwHIYZhFFfk46X3kNPfI5Zq97F4nGe3YDoWy4w03GxFA98_A3fpmJf228pIs5USGsQukM-plIyTPeS4d_lsGdhVu93Zpt2u2i0o27S3zIfHYle8m6fsFh_LU5CDGbgU6wNfLhw2HaeI2RYfV1UhZvTVhhT_c-UfqV2XQQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Pond, D.W.</creator><creator>Fallick, A.E.</creator><creator>Stevens, C.J.</creator><creator>Morrison, D.J.</creator><creator>Dixon, D.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20081201</creationdate><title>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</title><author>Pond, D.W. ; Fallick, A.E. ; Stevens, C.J. ; Morrison, D.J. ; Dixon, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a0b22d87ff2369749c1280df2381b35878a630f51b97921dfa438c612e53355b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biological oceanography</topic><topic>Carbon sequestration</topic><topic>Cerberus</topic><topic>Crustaceans</topic><topic>Deep-sea</topic><topic>Essential fatty acids</topic><topic>Fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Halice hesmonectes</topic><topic>Hydrothermal vents</topic><topic>Invertebrates</topic><topic>Isotopes</topic><topic>Lepetodrilus elevatus</topic><topic>Marine</topic><topic>Ocean bottom</topic><topic>Particular ecosystems</topic><topic>Sea water ecosystems</topic><topic>Stable carbon isotope</topic><topic>Synecology</topic><topic>Thermarces cerberus</topic><topic>Ventiella sulfuris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pond, D.W.</creatorcontrib><creatorcontrib>Fallick, A.E.</creatorcontrib><creatorcontrib>Stevens, C.J.</creatorcontrib><creatorcontrib>Morrison, D.J.</creatorcontrib><creatorcontrib>Dixon, D.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pond, D.W.</au><au>Fallick, A.E.</au><au>Stevens, C.J.</au><au>Morrison, D.J.</au><au>Dixon, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence</atitle><jtitle>Deep-sea research. Part I, Oceanographic research papers</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>55</volume><issue>12</issue><spage>1718</spage><epage>1726</epage><pages>1718-1726</pages><issn>0967-0637</issn><eissn>1879-0119</eissn><abstract>The hydrothermal vent zoarcid fish
Thermarces cerberus is a top predator that inhabits deep-sea hydrothermal vents on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how
T. cerberus successfully exploits the vent environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of
20
:
5
(
n
-
3
)
and
22
:
6
(
n
-
3
)
in muscle and ovary tissues of
T. cerberus were low and contained higher amounts of
20
:
5
(
n
-
3
)
than
22
:
6
(
n
-
3
)
. This is in contrast to most marine fish where
22
:
6
(
n
-
3
)
typically dominates. Prey items include the limpet (
Lepetodrilus elevatus) and amphipods (
Halice hesmonectes and
Ventiella sulfuris) and all contained PUFA dominated by
20
:
5
(
n
-
3
)
in amounts likely to support the requirements of
T. cerberus.
δ
C
13
values of
20
:
5
(
n
-
3
)
in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the vent environment. The potential origins of these PUFA are discussed in terms of the nutrition of
T. cerberus and more generally in terms of the evolution of vent taxa.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.dsr.2008.07.006</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0637 |
ispartof | Deep-sea research. Part I, Oceanographic research papers, 2008-12, Vol.55 (12), p.1718-1726 |
issn | 0967-0637 1879-0119 |
language | eng |
recordid | cdi_proquest_miscellaneous_19692943 |
source | Elsevier ScienceDirect Journals |
subjects | Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Biological oceanography Carbon sequestration Cerberus Crustaceans Deep-sea Essential fatty acids Fatty acids Fundamental and applied biological sciences. Psychology Halice hesmonectes Hydrothermal vents Invertebrates Isotopes Lepetodrilus elevatus Marine Ocean bottom Particular ecosystems Sea water ecosystems Stable carbon isotope Synecology Thermarces cerberus Ventiella sulfuris |
title | Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertebrate%20nutrition%20in%20a%20deep-sea%20hydrothermal%20vent%20ecosystem:%20Fatty%20acid%20and%20stable%20isotope%20evidence&rft.jtitle=Deep-sea%20research.%20Part%20I,%20Oceanographic%20research%20papers&rft.au=Pond,%20D.W.&rft.date=2008-12-01&rft.volume=55&rft.issue=12&rft.spage=1718&rft.epage=1726&rft.pages=1718-1726&rft.issn=0967-0637&rft.eissn=1879-0119&rft_id=info:doi/10.1016/j.dsr.2008.07.006&rft_dat=%3Cproquest_cross%3E1617330441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196694660&rft_id=info:pmid/&rft_els_id=S0967063708001593&rfr_iscdi=true |