Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering

During the last decades, a number of methods have been developed for the estimation of hydrologic model parameters. One frequently used and relatively simple algorithm is the parameter estimation (PEST) method. A close examination of this algorithm shows that it is very similar to the Extended Kalma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2007-04, Vol.337 (3), p.436-451
Hauptverfasser: Goegebeur, Maarten, Pauwels, Valentijn R.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 3
container_start_page 436
container_title Journal of hydrology (Amsterdam)
container_volume 337
creator Goegebeur, Maarten
Pauwels, Valentijn R.N.
description During the last decades, a number of methods have been developed for the estimation of hydrologic model parameters. One frequently used and relatively simple algorithm is the parameter estimation (PEST) method. A close examination of this algorithm shows that it is very similar to the Extended Kalman Filter (EKF). The differences between the methods are caused by the derivation of the algorithms: the EKF is derived through a minimization of the square difference between the true and the estimated model state, while PEST has been derived through a minimization of an objective function related to, but not equal to, the root mean square error between the model results and the observations. The objective of this paper is to analyze the performance of these two algorithms. A synthetic-data experiment has been developed for this purpose. It has been found that under high observation errors and/or temporally sparse observations the EKF can lead to a stable parameter estimation, while it is possible that under the same circumstances PEST does not yield a solution. Also, the choice of the initial guess for the parameter values can be an important issue in the application of PEST, while this is not so important for the EKF. The application of the Marquardt algorithm can lead to stable parameter estimates in case the PEST algorithm fails (meaning that nonphysical parameter values were obtained which lead to a premature abortion of the model simulations), but numerically the EKF is still superior. In order to solve this problem, a simple alternative to the Marquardt algorithm has been developed, which leads to a quicker convergence. Application of both methods to a conceptual rainfall–runoff model with 10 parameters shows the robustness of the EKF for parameter calibration. The overall conclusion from this work is that generally PEST and the EKF will lead to similar results, but that under high observation errors, infrequent observations, and/or strongly erroneous initial parameter values, the PEST method can fail because of excessive parameter updates caused by the conceptual error in the objective function minimized by the calibration algorithm, while the EKF can still yield stable parameter estimates.
doi_str_mv 10.1016/j.jhydrol.2007.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19688174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169407000947</els_id><sourcerecordid>19688174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-103cb6de24c44745b3b12854f95b921f76f4ae5ef004e70461b5f93e33d40123</originalsourceid><addsrcrecordid>eNqFkEtv1DAURi0EEkPhJ1R4A7uE60fiZIVQNX2ISiB1kLqzHOd6xqMkHmxPRf89rmYkltzN3ZzvPg4hlwxqBqz9sq_3u-cxhqnmAKoGXgO0r8iKdaqvuAL1mqwAOK9Y28u35F1KeyglhFyRx7v5EMMTzrhkGhzNO6Q_1w8bejDRzJgxUkzZzyb7sFAzbUP0eTcXLobjdkfXfzIuI470u5lms9BrP5WMX7bvyRtnpoQfzv2CbK7Xm6vb6v7Hzd3Vt_vKil7mioGwQzsil1ZKJZtBDIx3jXR9M_ScOdU6abBBByBRgWzZ0LheoBCjBMbFBfl8Glu--H0sp-rZJ4vTZBYMx6RZ33YdU7KAzQm0MaQU0elDLG_FZ81Av2jUe33WqF80auC6aCy5T-cFJlkzuWgW69O_cKcK1fWF-3jinAnabGNhfj1wYKLMUr1sWCG-nggsOp48Rp2sx8Xi6CParMfg_3PLX8C_lKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19688174</pqid></control><display><type>article</type><title>Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering</title><source>Elsevier ScienceDirect Journals</source><creator>Goegebeur, Maarten ; Pauwels, Valentijn R.N.</creator><creatorcontrib>Goegebeur, Maarten ; Pauwels, Valentijn R.N.</creatorcontrib><description>During the last decades, a number of methods have been developed for the estimation of hydrologic model parameters. One frequently used and relatively simple algorithm is the parameter estimation (PEST) method. A close examination of this algorithm shows that it is very similar to the Extended Kalman Filter (EKF). The differences between the methods are caused by the derivation of the algorithms: the EKF is derived through a minimization of the square difference between the true and the estimated model state, while PEST has been derived through a minimization of an objective function related to, but not equal to, the root mean square error between the model results and the observations. The objective of this paper is to analyze the performance of these two algorithms. A synthetic-data experiment has been developed for this purpose. It has been found that under high observation errors and/or temporally sparse observations the EKF can lead to a stable parameter estimation, while it is possible that under the same circumstances PEST does not yield a solution. Also, the choice of the initial guess for the parameter values can be an important issue in the application of PEST, while this is not so important for the EKF. The application of the Marquardt algorithm can lead to stable parameter estimates in case the PEST algorithm fails (meaning that nonphysical parameter values were obtained which lead to a premature abortion of the model simulations), but numerically the EKF is still superior. In order to solve this problem, a simple alternative to the Marquardt algorithm has been developed, which leads to a quicker convergence. Application of both methods to a conceptual rainfall–runoff model with 10 parameters shows the robustness of the EKF for parameter calibration. The overall conclusion from this work is that generally PEST and the EKF will lead to similar results, but that under high observation errors, infrequent observations, and/or strongly erroneous initial parameter values, the PEST method can fail because of excessive parameter updates caused by the conceptual error in the objective function minimized by the calibration algorithm, while the EKF can still yield stable parameter estimates.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2007.02.006</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>algorithms ; Calibration ; Earth sciences ; Earth, ocean, space ; estimation ; Exact sciences and technology ; Extended Kalman Filter ; hydrologic models ; Hydrology. Hydrogeology ; model validation ; Parameter estimation ; PEST ; rain ; runoff ; TOPLATS ; watershed hydrology ; watersheds</subject><ispartof>Journal of hydrology (Amsterdam), 2007-04, Vol.337 (3), p.436-451</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-103cb6de24c44745b3b12854f95b921f76f4ae5ef004e70461b5f93e33d40123</citedby><cites>FETCH-LOGICAL-c394t-103cb6de24c44745b3b12854f95b921f76f4ae5ef004e70461b5f93e33d40123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169407000947$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18700689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goegebeur, Maarten</creatorcontrib><creatorcontrib>Pauwels, Valentijn R.N.</creatorcontrib><title>Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering</title><title>Journal of hydrology (Amsterdam)</title><description>During the last decades, a number of methods have been developed for the estimation of hydrologic model parameters. One frequently used and relatively simple algorithm is the parameter estimation (PEST) method. A close examination of this algorithm shows that it is very similar to the Extended Kalman Filter (EKF). The differences between the methods are caused by the derivation of the algorithms: the EKF is derived through a minimization of the square difference between the true and the estimated model state, while PEST has been derived through a minimization of an objective function related to, but not equal to, the root mean square error between the model results and the observations. The objective of this paper is to analyze the performance of these two algorithms. A synthetic-data experiment has been developed for this purpose. It has been found that under high observation errors and/or temporally sparse observations the EKF can lead to a stable parameter estimation, while it is possible that under the same circumstances PEST does not yield a solution. Also, the choice of the initial guess for the parameter values can be an important issue in the application of PEST, while this is not so important for the EKF. The application of the Marquardt algorithm can lead to stable parameter estimates in case the PEST algorithm fails (meaning that nonphysical parameter values were obtained which lead to a premature abortion of the model simulations), but numerically the EKF is still superior. In order to solve this problem, a simple alternative to the Marquardt algorithm has been developed, which leads to a quicker convergence. Application of both methods to a conceptual rainfall–runoff model with 10 parameters shows the robustness of the EKF for parameter calibration. The overall conclusion from this work is that generally PEST and the EKF will lead to similar results, but that under high observation errors, infrequent observations, and/or strongly erroneous initial parameter values, the PEST method can fail because of excessive parameter updates caused by the conceptual error in the objective function minimized by the calibration algorithm, while the EKF can still yield stable parameter estimates.</description><subject>algorithms</subject><subject>Calibration</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>estimation</subject><subject>Exact sciences and technology</subject><subject>Extended Kalman Filter</subject><subject>hydrologic models</subject><subject>Hydrology. Hydrogeology</subject><subject>model validation</subject><subject>Parameter estimation</subject><subject>PEST</subject><subject>rain</subject><subject>runoff</subject><subject>TOPLATS</subject><subject>watershed hydrology</subject><subject>watersheds</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAURi0EEkPhJ1R4A7uE60fiZIVQNX2ISiB1kLqzHOd6xqMkHmxPRf89rmYkltzN3ZzvPg4hlwxqBqz9sq_3u-cxhqnmAKoGXgO0r8iKdaqvuAL1mqwAOK9Y28u35F1KeyglhFyRx7v5EMMTzrhkGhzNO6Q_1w8bejDRzJgxUkzZzyb7sFAzbUP0eTcXLobjdkfXfzIuI470u5lms9BrP5WMX7bvyRtnpoQfzv2CbK7Xm6vb6v7Hzd3Vt_vKil7mioGwQzsil1ZKJZtBDIx3jXR9M_ScOdU6abBBByBRgWzZ0LheoBCjBMbFBfl8Glu--H0sp-rZJ4vTZBYMx6RZ33YdU7KAzQm0MaQU0elDLG_FZ81Av2jUe33WqF80auC6aCy5T-cFJlkzuWgW69O_cKcK1fWF-3jinAnabGNhfj1wYKLMUr1sWCG-nggsOp48Rp2sx8Xi6CParMfg_3PLX8C_lKk</recordid><startdate>20070430</startdate><enddate>20070430</enddate><creator>Goegebeur, Maarten</creator><creator>Pauwels, Valentijn R.N.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20070430</creationdate><title>Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering</title><author>Goegebeur, Maarten ; Pauwels, Valentijn R.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-103cb6de24c44745b3b12854f95b921f76f4ae5ef004e70461b5f93e33d40123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>algorithms</topic><topic>Calibration</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>estimation</topic><topic>Exact sciences and technology</topic><topic>Extended Kalman Filter</topic><topic>hydrologic models</topic><topic>Hydrology. Hydrogeology</topic><topic>model validation</topic><topic>Parameter estimation</topic><topic>PEST</topic><topic>rain</topic><topic>runoff</topic><topic>TOPLATS</topic><topic>watershed hydrology</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goegebeur, Maarten</creatorcontrib><creatorcontrib>Pauwels, Valentijn R.N.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goegebeur, Maarten</au><au>Pauwels, Valentijn R.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2007-04-30</date><risdate>2007</risdate><volume>337</volume><issue>3</issue><spage>436</spage><epage>451</epage><pages>436-451</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>During the last decades, a number of methods have been developed for the estimation of hydrologic model parameters. One frequently used and relatively simple algorithm is the parameter estimation (PEST) method. A close examination of this algorithm shows that it is very similar to the Extended Kalman Filter (EKF). The differences between the methods are caused by the derivation of the algorithms: the EKF is derived through a minimization of the square difference between the true and the estimated model state, while PEST has been derived through a minimization of an objective function related to, but not equal to, the root mean square error between the model results and the observations. The objective of this paper is to analyze the performance of these two algorithms. A synthetic-data experiment has been developed for this purpose. It has been found that under high observation errors and/or temporally sparse observations the EKF can lead to a stable parameter estimation, while it is possible that under the same circumstances PEST does not yield a solution. Also, the choice of the initial guess for the parameter values can be an important issue in the application of PEST, while this is not so important for the EKF. The application of the Marquardt algorithm can lead to stable parameter estimates in case the PEST algorithm fails (meaning that nonphysical parameter values were obtained which lead to a premature abortion of the model simulations), but numerically the EKF is still superior. In order to solve this problem, a simple alternative to the Marquardt algorithm has been developed, which leads to a quicker convergence. Application of both methods to a conceptual rainfall–runoff model with 10 parameters shows the robustness of the EKF for parameter calibration. The overall conclusion from this work is that generally PEST and the EKF will lead to similar results, but that under high observation errors, infrequent observations, and/or strongly erroneous initial parameter values, the PEST method can fail because of excessive parameter updates caused by the conceptual error in the objective function minimized by the calibration algorithm, while the EKF can still yield stable parameter estimates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2007.02.006</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2007-04, Vol.337 (3), p.436-451
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_19688174
source Elsevier ScienceDirect Journals
subjects algorithms
Calibration
Earth sciences
Earth, ocean, space
estimation
Exact sciences and technology
Extended Kalman Filter
hydrologic models
Hydrology. Hydrogeology
model validation
Parameter estimation
PEST
rain
runoff
TOPLATS
watershed hydrology
watersheds
title Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20the%20PEST%20parameter%20estimation%20algorithm%20through%20Extended%20Kalman%20Filtering&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Goegebeur,%20Maarten&rft.date=2007-04-30&rft.volume=337&rft.issue=3&rft.spage=436&rft.epage=451&rft.pages=436-451&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2007.02.006&rft_dat=%3Cproquest_cross%3E19688174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19688174&rft_id=info:pmid/&rft_els_id=S0022169407000947&rfr_iscdi=true