Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy

Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-01, Vol.14 (3), p.n/a
Hauptverfasser: Chen, Guangcun, Lin, Suying, Huang, Dehua, Zhang, Yejun, Li, Chunyan, Wang, Mao, Wang, Qiangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Chen, Guangcun
Lin, Suying
Huang, Dehua
Zhang, Yejun
Li, Chunyan
Wang, Mao
Wang, Qiangbin
description Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual‐labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence imaging in the second window (NIR‐II) and endogenous red bioluminescence imaging (BLI). The NIR‐II fluorescence of Ag2S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red‐emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure. A novel optical imaging method is developed to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence of Ag2S quantum dots in the second window, and endogenous bioluminescence imaging of red‐emitting firefly luciferase. For the first time, the dynamic trafficking and the fate of transplanted stem cells in vivo are visualized in situ with high spatiotemporal resolution in a mouse model.
doi_str_mv 10.1002/smll.201702679
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1968446175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988483672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-f1a238e77583d1a5cbb66bb4e3ccb76435ec5ff6013d6c6f923cd85f4188d0bd3</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGI4hePZpNvHgB96Pd3R4NESVBSQS9eGi22ymUbFvsFgj_3iUgJl7MHGYOzzx58yJ0TUmPEsLuXWFtjxEqCRMyOkFtKijvCsWi0-NNSQtdOLcghFMWyHPUYhGVflQbfb7BGrTNyxlu5oAHugFcZXha69ItrS4bSPGkgQL3wVqHhyX-yNcV3uTNHGv8Wq3B4vGyyY22eFjo2U40aWqvmW0v0VmmrYOrw-6g98HjtP_cHY2fhv2HUdcElETdjGrGFUgZKp5SHZokESJJAuDGJFIEPAQTZpkglKfCiCxi3KQqzAKqVEqSlHfQ3d67rKuvFbgmLnJnfF5dQrVyMY2ECgJBZejR2z_oolrVpU_nKaUCxYVknurtKVNXztWQxcs6L3S9jSmJd7XHu9rjY-3-4eagXSUFpEf8p2cPRHtgk1vY_qOLJy-j0a_8G9CsjiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988483672</pqid></control><display><type>article</type><title>Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Guangcun ; Lin, Suying ; Huang, Dehua ; Zhang, Yejun ; Li, Chunyan ; Wang, Mao ; Wang, Qiangbin</creator><creatorcontrib>Chen, Guangcun ; Lin, Suying ; Huang, Dehua ; Zhang, Yejun ; Li, Chunyan ; Wang, Mao ; Wang, Qiangbin</creatorcontrib><description>Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual‐labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence imaging in the second window (NIR‐II) and endogenous red bioluminescence imaging (BLI). The NIR‐II fluorescence of Ag2S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red‐emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure. A novel optical imaging method is developed to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence of Ag2S quantum dots in the second window, and endogenous bioluminescence imaging of red‐emitting firefly luciferase. For the first time, the dynamic trafficking and the fate of transplanted stem cells in vivo are visualized in situ with high spatiotemporal resolution in a mouse model.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201702679</identifier><identifier>PMID: 29171718</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bioluminescence ; bioluminescence imaging ; cell fate ; Fluorescence ; Infrared imaging ; Liver ; Nanotechnology ; NIR‐II fluorescence imaging ; Quantitative analysis ; Quantum dots ; Regeneration (physiology) ; regenerative medicine ; Spatial resolution ; Stem cells ; Strategy ; Tissue engineering ; Transplantation ; Viability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-01, Vol.14 (3), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-f1a238e77583d1a5cbb66bb4e3ccb76435ec5ff6013d6c6f923cd85f4188d0bd3</citedby><cites>FETCH-LOGICAL-c4109-f1a238e77583d1a5cbb66bb4e3ccb76435ec5ff6013d6c6f923cd85f4188d0bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201702679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201702679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29171718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guangcun</creatorcontrib><creatorcontrib>Lin, Suying</creatorcontrib><creatorcontrib>Huang, Dehua</creatorcontrib><creatorcontrib>Zhang, Yejun</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Wang, Mao</creatorcontrib><creatorcontrib>Wang, Qiangbin</creatorcontrib><title>Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual‐labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence imaging in the second window (NIR‐II) and endogenous red bioluminescence imaging (BLI). The NIR‐II fluorescence of Ag2S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red‐emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure. A novel optical imaging method is developed to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence of Ag2S quantum dots in the second window, and endogenous bioluminescence imaging of red‐emitting firefly luciferase. For the first time, the dynamic trafficking and the fate of transplanted stem cells in vivo are visualized in situ with high spatiotemporal resolution in a mouse model.</description><subject>Bioluminescence</subject><subject>bioluminescence imaging</subject><subject>cell fate</subject><subject>Fluorescence</subject><subject>Infrared imaging</subject><subject>Liver</subject><subject>Nanotechnology</subject><subject>NIR‐II fluorescence imaging</subject><subject>Quantitative analysis</subject><subject>Quantum dots</subject><subject>Regeneration (physiology)</subject><subject>regenerative medicine</subject><subject>Spatial resolution</subject><subject>Stem cells</subject><subject>Strategy</subject><subject>Tissue engineering</subject><subject>Transplantation</subject><subject>Viability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhjdGI4hePZpNvHgB96Pd3R4NESVBSQS9eGi22ymUbFvsFgj_3iUgJl7MHGYOzzx58yJ0TUmPEsLuXWFtjxEqCRMyOkFtKijvCsWi0-NNSQtdOLcghFMWyHPUYhGVflQbfb7BGrTNyxlu5oAHugFcZXha69ItrS4bSPGkgQL3wVqHhyX-yNcV3uTNHGv8Wq3B4vGyyY22eFjo2U40aWqvmW0v0VmmrYOrw-6g98HjtP_cHY2fhv2HUdcElETdjGrGFUgZKp5SHZokESJJAuDGJFIEPAQTZpkglKfCiCxi3KQqzAKqVEqSlHfQ3d67rKuvFbgmLnJnfF5dQrVyMY2ECgJBZejR2z_oolrVpU_nKaUCxYVknurtKVNXztWQxcs6L3S9jSmJd7XHu9rjY-3-4eagXSUFpEf8p2cPRHtgk1vY_qOLJy-j0a_8G9CsjiI</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Chen, Guangcun</creator><creator>Lin, Suying</creator><creator>Huang, Dehua</creator><creator>Zhang, Yejun</creator><creator>Li, Chunyan</creator><creator>Wang, Mao</creator><creator>Wang, Qiangbin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy</title><author>Chen, Guangcun ; Lin, Suying ; Huang, Dehua ; Zhang, Yejun ; Li, Chunyan ; Wang, Mao ; Wang, Qiangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-f1a238e77583d1a5cbb66bb4e3ccb76435ec5ff6013d6c6f923cd85f4188d0bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioluminescence</topic><topic>bioluminescence imaging</topic><topic>cell fate</topic><topic>Fluorescence</topic><topic>Infrared imaging</topic><topic>Liver</topic><topic>Nanotechnology</topic><topic>NIR‐II fluorescence imaging</topic><topic>Quantitative analysis</topic><topic>Quantum dots</topic><topic>Regeneration (physiology)</topic><topic>regenerative medicine</topic><topic>Spatial resolution</topic><topic>Stem cells</topic><topic>Strategy</topic><topic>Tissue engineering</topic><topic>Transplantation</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guangcun</creatorcontrib><creatorcontrib>Lin, Suying</creatorcontrib><creatorcontrib>Huang, Dehua</creatorcontrib><creatorcontrib>Zhang, Yejun</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Wang, Mao</creatorcontrib><creatorcontrib>Wang, Qiangbin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guangcun</au><au>Lin, Suying</au><au>Huang, Dehua</au><au>Zhang, Yejun</au><au>Li, Chunyan</au><au>Wang, Mao</au><au>Wang, Qiangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Stem‐cell‐based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual‐labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence imaging in the second window (NIR‐II) and endogenous red bioluminescence imaging (BLI). The NIR‐II fluorescence of Ag2S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red‐emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure. A novel optical imaging method is developed to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near‐infrared fluorescence of Ag2S quantum dots in the second window, and endogenous bioluminescence imaging of red‐emitting firefly luciferase. For the first time, the dynamic trafficking and the fate of transplanted stem cells in vivo are visualized in situ with high spatiotemporal resolution in a mouse model.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29171718</pmid><doi>10.1002/smll.201702679</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-01, Vol.14 (3), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1968446175
source Wiley Online Library Journals Frontfile Complete
subjects Bioluminescence
bioluminescence imaging
cell fate
Fluorescence
Infrared imaging
Liver
Nanotechnology
NIR‐II fluorescence imaging
Quantitative analysis
Quantum dots
Regeneration (physiology)
regenerative medicine
Spatial resolution
Stem cells
Strategy
Tissue engineering
Transplantation
Viability
title Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Fate%20of%20Transplanted%20Stem%20Cells%20In%20Vivo%20with%20a%20Novel%20Optical%20Imaging%20Strategy&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Guangcun&rft.date=2018-01&rft.volume=14&rft.issue=3&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201702679&rft_dat=%3Cproquest_cross%3E1988483672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988483672&rft_id=info:pmid/29171718&rfr_iscdi=true