Toward Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI): Initial fabrication and characterization

Purpose We present the first prototype Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI). This detector includes a layer of avalanche amorphous Selenium (a‐Se) (HARP) as the photoconductor in an indirect detector to amplify the signal and reduce th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2018-02, Vol.45 (2), p.794-802
Hauptverfasser: Scheuermann, James R., Howansky, Adrian, Hansroul, Marc, Léveillé, Sébastien, Tanioka, Kenkichi, Zhao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 2
container_start_page 794
container_title Medical physics (Lancaster)
container_volume 45
creator Scheuermann, James R.
Howansky, Adrian
Hansroul, Marc
Léveillé, Sébastien
Tanioka, Kenkichi
Zhao, Wei
description Purpose We present the first prototype Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI). This detector includes a layer of avalanche amorphous Selenium (a‐Se) (HARP) as the photoconductor in an indirect detector to amplify the signal and reduce the effects of electronic noise to obtain quantum noise‐limited images for low‐dose applications. It is the first time avalanche a‐Se has been used in a solid‐state imaging device and poses as a possible solution to eliminate the effects of electronic noise, which is crucial for low‐dose imaging performance of AMFPI. Methods We successfully deposited a solid‐state HARP structure onto a 24 × 30 cm2 array of thin‐film transistors (TFT array) with a pixel pitch of 85 μm. The HARP layer consists of 16 μm of a‐Se with a hole‐blocking and electron‐blocking layer to prevent charge injection from the high‐voltage bias and pixel electrodes, respectively. An electric field (ESe) up to 105 V μm−1 was applied across the a‐Se layer without breakdown. A 150 μm thick‐structured CsI:Tl scintillator was used to form SHARP‐AMFPI. The x‐ray imaging performance is characterized using a 30 kVp Mo/Mo beam. We evaluate the spatial resolution, noise power, and detective quantum efficiency at zero frequency of the system with and without avalanche gain. The results are analyzed using cascaded linear system model (CLSM). Results An avalanche gain of 76 ± 5 was measured at ESe = 105 V μm−1. We demonstrate that avalanche gain can amplify the signal to overcome electronic noise. As avalanche gain is increased, image quality improves for a constant (0.76 mR) exposure until electronic noise is overcome. Our system is currently limited by poor optical transparency of our high‐voltage electrode and long integrating time which results in dark current noise. These two effects cause high‐spatial frequency noise to dominate imaging performance. Conclusions We demonstrate the feasibility of a solid‐state HARP x‐ray imager and have fabricated the largest active area HARP sensor to date. Procedures to reduce secondary quantum and dark noise are outlined. Future work will improve optical coupling and charge transport which will allow for frequency DQE and temporal metrics to be obtained.
doi_str_mv 10.1002/mp.12693
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1968442404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968442404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2853-b9a294bd06bbaef6fa74654aebc5e5ad2ae916280ba4736206e336f10e81595c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNB4gmQl2WRYjuOZ8wuqpjOSB0RtWUd3Tg3E6PEHhynfysegTWP1ydp2imwYnWlq6OzOB8h7zk75oyJT_3umAul0xdkJuQ8TaRg-iWZMaZlIiTLDsibYfjOGFNpxl6TA6H5nDM1n5Hfl_4aQk0vjHXRdh1EH-jKbtv7n79OwTqaX0EHzrRIz8ehtW5Li9ZHb7yrR_MI5ybaK6QbiMHe0OVkoAU47Oi6hy0GenSxys-LSZdvlsX642e6djZa6GgDVbAGovWOgqupaSGAiRjs3dPzLXnVQDfgu-d7SL4tv1yerJKzr6frk_wsMWKRpUmlQWhZ1UxVFWCjGphLlUnAymSYQS0ANVdiwSqY0ijBFKapajjDBc90ZtJDcrT37oL_MeIQy94OBqcWDv04lFyrhZRTRvkPNcEPQ8Cm3AXbQ7gtOSsflyj7Xfm0xIR-eLaOVY_1X_BP-glI9sC17fD2v6JyU-yFD7sklLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968442404</pqid></control><display><type>article</type><title>Toward Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI): Initial fabrication and characterization</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Scheuermann, James R. ; Howansky, Adrian ; Hansroul, Marc ; Léveillé, Sébastien ; Tanioka, Kenkichi ; Zhao, Wei</creator><creatorcontrib>Scheuermann, James R. ; Howansky, Adrian ; Hansroul, Marc ; Léveillé, Sébastien ; Tanioka, Kenkichi ; Zhao, Wei</creatorcontrib><description>Purpose We present the first prototype Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI). This detector includes a layer of avalanche amorphous Selenium (a‐Se) (HARP) as the photoconductor in an indirect detector to amplify the signal and reduce the effects of electronic noise to obtain quantum noise‐limited images for low‐dose applications. It is the first time avalanche a‐Se has been used in a solid‐state imaging device and poses as a possible solution to eliminate the effects of electronic noise, which is crucial for low‐dose imaging performance of AMFPI. Methods We successfully deposited a solid‐state HARP structure onto a 24 × 30 cm2 array of thin‐film transistors (TFT array) with a pixel pitch of 85 μm. The HARP layer consists of 16 μm of a‐Se with a hole‐blocking and electron‐blocking layer to prevent charge injection from the high‐voltage bias and pixel electrodes, respectively. An electric field (ESe) up to 105 V μm−1 was applied across the a‐Se layer without breakdown. A 150 μm thick‐structured CsI:Tl scintillator was used to form SHARP‐AMFPI. The x‐ray imaging performance is characterized using a 30 kVp Mo/Mo beam. We evaluate the spatial resolution, noise power, and detective quantum efficiency at zero frequency of the system with and without avalanche gain. The results are analyzed using cascaded linear system model (CLSM). Results An avalanche gain of 76 ± 5 was measured at ESe = 105 V μm−1. We demonstrate that avalanche gain can amplify the signal to overcome electronic noise. As avalanche gain is increased, image quality improves for a constant (0.76 mR) exposure until electronic noise is overcome. Our system is currently limited by poor optical transparency of our high‐voltage electrode and long integrating time which results in dark current noise. These two effects cause high‐spatial frequency noise to dominate imaging performance. Conclusions We demonstrate the feasibility of a solid‐state HARP x‐ray imager and have fabricated the largest active area HARP sensor to date. Procedures to reduce secondary quantum and dark noise are outlined. Future work will improve optical coupling and charge transport which will allow for frequency DQE and temporal metrics to be obtained.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.12693</identifier><identifier>PMID: 29171067</identifier><language>eng</language><publisher>United States</publisher><subject>avalanche gain ; digital detectors ; Equipment Design ; Light ; Linear Models ; Radiography ; Scintillation Counting - instrumentation ; selenium ; Selenium - chemistry ; solid state</subject><ispartof>Medical physics (Lancaster), 2018-02, Vol.45 (2), p.794-802</ispartof><rights>2017 American Association of Physicists in Medicine</rights><rights>2017 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2853-b9a294bd06bbaef6fa74654aebc5e5ad2ae916280ba4736206e336f10e81595c3</citedby><cites>FETCH-LOGICAL-c2853-b9a294bd06bbaef6fa74654aebc5e5ad2ae916280ba4736206e336f10e81595c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.12693$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.12693$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29171067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheuermann, James R.</creatorcontrib><creatorcontrib>Howansky, Adrian</creatorcontrib><creatorcontrib>Hansroul, Marc</creatorcontrib><creatorcontrib>Léveillé, Sébastien</creatorcontrib><creatorcontrib>Tanioka, Kenkichi</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><title>Toward Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI): Initial fabrication and characterization</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose We present the first prototype Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI). This detector includes a layer of avalanche amorphous Selenium (a‐Se) (HARP) as the photoconductor in an indirect detector to amplify the signal and reduce the effects of electronic noise to obtain quantum noise‐limited images for low‐dose applications. It is the first time avalanche a‐Se has been used in a solid‐state imaging device and poses as a possible solution to eliminate the effects of electronic noise, which is crucial for low‐dose imaging performance of AMFPI. Methods We successfully deposited a solid‐state HARP structure onto a 24 × 30 cm2 array of thin‐film transistors (TFT array) with a pixel pitch of 85 μm. The HARP layer consists of 16 μm of a‐Se with a hole‐blocking and electron‐blocking layer to prevent charge injection from the high‐voltage bias and pixel electrodes, respectively. An electric field (ESe) up to 105 V μm−1 was applied across the a‐Se layer without breakdown. A 150 μm thick‐structured CsI:Tl scintillator was used to form SHARP‐AMFPI. The x‐ray imaging performance is characterized using a 30 kVp Mo/Mo beam. We evaluate the spatial resolution, noise power, and detective quantum efficiency at zero frequency of the system with and without avalanche gain. The results are analyzed using cascaded linear system model (CLSM). Results An avalanche gain of 76 ± 5 was measured at ESe = 105 V μm−1. We demonstrate that avalanche gain can amplify the signal to overcome electronic noise. As avalanche gain is increased, image quality improves for a constant (0.76 mR) exposure until electronic noise is overcome. Our system is currently limited by poor optical transparency of our high‐voltage electrode and long integrating time which results in dark current noise. These two effects cause high‐spatial frequency noise to dominate imaging performance. Conclusions We demonstrate the feasibility of a solid‐state HARP x‐ray imager and have fabricated the largest active area HARP sensor to date. Procedures to reduce secondary quantum and dark noise are outlined. Future work will improve optical coupling and charge transport which will allow for frequency DQE and temporal metrics to be obtained.</description><subject>avalanche gain</subject><subject>digital detectors</subject><subject>Equipment Design</subject><subject>Light</subject><subject>Linear Models</subject><subject>Radiography</subject><subject>Scintillation Counting - instrumentation</subject><subject>selenium</subject><subject>Selenium - chemistry</subject><subject>solid state</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNB4gmQl2WRYjuOZ8wuqpjOSB0RtWUd3Tg3E6PEHhynfysegTWP1ydp2imwYnWlq6OzOB8h7zk75oyJT_3umAul0xdkJuQ8TaRg-iWZMaZlIiTLDsibYfjOGFNpxl6TA6H5nDM1n5Hfl_4aQk0vjHXRdh1EH-jKbtv7n79OwTqaX0EHzrRIz8ehtW5Li9ZHb7yrR_MI5ybaK6QbiMHe0OVkoAU47Oi6hy0GenSxys-LSZdvlsX642e6djZa6GgDVbAGovWOgqupaSGAiRjs3dPzLXnVQDfgu-d7SL4tv1yerJKzr6frk_wsMWKRpUmlQWhZ1UxVFWCjGphLlUnAymSYQS0ANVdiwSqY0ijBFKapajjDBc90ZtJDcrT37oL_MeIQy94OBqcWDv04lFyrhZRTRvkPNcEPQ8Cm3AXbQ7gtOSsflyj7Xfm0xIR-eLaOVY_1X_BP-glI9sC17fD2v6JyU-yFD7sklLY</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Scheuermann, James R.</creator><creator>Howansky, Adrian</creator><creator>Hansroul, Marc</creator><creator>Léveillé, Sébastien</creator><creator>Tanioka, Kenkichi</creator><creator>Zhao, Wei</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201802</creationdate><title>Toward Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI): Initial fabrication and characterization</title><author>Scheuermann, James R. ; Howansky, Adrian ; Hansroul, Marc ; Léveillé, Sébastien ; Tanioka, Kenkichi ; Zhao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2853-b9a294bd06bbaef6fa74654aebc5e5ad2ae916280ba4736206e336f10e81595c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>avalanche gain</topic><topic>digital detectors</topic><topic>Equipment Design</topic><topic>Light</topic><topic>Linear Models</topic><topic>Radiography</topic><topic>Scintillation Counting - instrumentation</topic><topic>selenium</topic><topic>Selenium - chemistry</topic><topic>solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheuermann, James R.</creatorcontrib><creatorcontrib>Howansky, Adrian</creatorcontrib><creatorcontrib>Hansroul, Marc</creatorcontrib><creatorcontrib>Léveillé, Sébastien</creatorcontrib><creatorcontrib>Tanioka, Kenkichi</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheuermann, James R.</au><au>Howansky, Adrian</au><au>Hansroul, Marc</au><au>Léveillé, Sébastien</au><au>Tanioka, Kenkichi</au><au>Zhao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI): Initial fabrication and characterization</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2018-02</date><risdate>2018</risdate><volume>45</volume><issue>2</issue><spage>794</spage><epage>802</epage><pages>794-802</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose We present the first prototype Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI). This detector includes a layer of avalanche amorphous Selenium (a‐Se) (HARP) as the photoconductor in an indirect detector to amplify the signal and reduce the effects of electronic noise to obtain quantum noise‐limited images for low‐dose applications. It is the first time avalanche a‐Se has been used in a solid‐state imaging device and poses as a possible solution to eliminate the effects of electronic noise, which is crucial for low‐dose imaging performance of AMFPI. Methods We successfully deposited a solid‐state HARP structure onto a 24 × 30 cm2 array of thin‐film transistors (TFT array) with a pixel pitch of 85 μm. The HARP layer consists of 16 μm of a‐Se with a hole‐blocking and electron‐blocking layer to prevent charge injection from the high‐voltage bias and pixel electrodes, respectively. An electric field (ESe) up to 105 V μm−1 was applied across the a‐Se layer without breakdown. A 150 μm thick‐structured CsI:Tl scintillator was used to form SHARP‐AMFPI. The x‐ray imaging performance is characterized using a 30 kVp Mo/Mo beam. We evaluate the spatial resolution, noise power, and detective quantum efficiency at zero frequency of the system with and without avalanche gain. The results are analyzed using cascaded linear system model (CLSM). Results An avalanche gain of 76 ± 5 was measured at ESe = 105 V μm−1. We demonstrate that avalanche gain can amplify the signal to overcome electronic noise. As avalanche gain is increased, image quality improves for a constant (0.76 mR) exposure until electronic noise is overcome. Our system is currently limited by poor optical transparency of our high‐voltage electrode and long integrating time which results in dark current noise. These two effects cause high‐spatial frequency noise to dominate imaging performance. Conclusions We demonstrate the feasibility of a solid‐state HARP x‐ray imager and have fabricated the largest active area HARP sensor to date. Procedures to reduce secondary quantum and dark noise are outlined. Future work will improve optical coupling and charge transport which will allow for frequency DQE and temporal metrics to be obtained.</abstract><cop>United States</cop><pmid>29171067</pmid><doi>10.1002/mp.12693</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2018-02, Vol.45 (2), p.794-802
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_1968442404
source MEDLINE; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects avalanche gain
digital detectors
Equipment Design
Light
Linear Models
Radiography
Scintillation Counting - instrumentation
selenium
Selenium - chemistry
solid state
title Toward Scintillator High‐Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP‐AMFPI): Initial fabrication and characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Scintillator%20High%E2%80%90Gain%20Avalanche%20Rushing%20Photoconductor%20Active%20Matrix%20Flat%20Panel%20Imager%20(SHARP%E2%80%90AMFPI):%20Initial%20fabrication%20and%20characterization&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Scheuermann,%20James%20R.&rft.date=2018-02&rft.volume=45&rft.issue=2&rft.spage=794&rft.epage=802&rft.pages=794-802&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.12693&rft_dat=%3Cproquest_cross%3E1968442404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968442404&rft_id=info:pmid/29171067&rfr_iscdi=true