A novel fabrication method of carbon electrodes using 3D printing and chemical modification process
Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensi...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2018-03, Vol.20 (1), p.4-9, Article 4 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 4 |
container_title | Biomedical microdevices |
container_volume | 20 |
creator | Tian, Pan Chen, Chaoyang Hu, Jie Qi, Jin Wang, Qianghua Chen, Jimmy Ching-Ming Cavanaugh, John Peng, Yinghong Cheng, Mark Ming-Cheng |
description | Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics. |
doi_str_mv | 10.1007/s10544-017-0247-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1968441808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968441808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-775ef362fa46341578481cd0821909f3f7f16acd78c20dcd0745b881fc63cc8c3</originalsourceid><addsrcrecordid>eNp1kU9PAyEQxYnR2Fr9AF4MiRcvq7BQhh6b-jdp4kXPhGWh3WZ3qbBr4reXTVtjTDwxgd-84c1D6JKSW0oI3EVKppxnhEJGcg4ZO0JjOoU8kyDpcaqZhCynIEboLMYNIXQmhDhFo3xGgUgBY2TmuPWftsZOF6Eyuqt8ixvbrX2JvcNGhyJd2NqaLvjSRtzHql1hdo-3oWq7odZtic3aNqm7xo0vK3fQ2QZvbIzn6MTpOtqL_TlB748Pb4vnbPn69LKYLzPDGekygKl1TOROc8F48iG5pKYkMqczMnPMgaNCmxKkyUmZHoBPCympM4IZIw2boJudbpr70dvYqaaKxta1bq3vo0ruJedUEpnQ6z_oxvehTb8bKABIi2KJojvKBB9jsE4l040OX4oSNSSgdgmolIAaElBDz9VeuS8aW_50HFaegHwHxGGDKxt-jf5X9RuafZBj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967779663</pqid></control><display><type>article</type><title>A novel fabrication method of carbon electrodes using 3D printing and chemical modification process</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Tian, Pan ; Chen, Chaoyang ; Hu, Jie ; Qi, Jin ; Wang, Qianghua ; Chen, Jimmy Ching-Ming ; Cavanaugh, John ; Peng, Yinghong ; Cheng, Mark Ming-Cheng</creator><creatorcontrib>Tian, Pan ; Chen, Chaoyang ; Hu, Jie ; Qi, Jin ; Wang, Qianghua ; Chen, Jimmy Ching-Ming ; Cavanaugh, John ; Peng, Yinghong ; Cheng, Mark Ming-Cheng</creatorcontrib><description>Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-017-0247-3</identifier><identifier>PMID: 29170867</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3-D printers ; Animals ; Biological and Medical Physics ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biophysics ; Capacitance ; Carbon ; Carbon - chemistry ; Chemical modification ; Dielectric Spectroscopy ; Electric Conductivity ; Electric Stimulation - instrumentation ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrodes, Implanted ; Electromyography ; Electromyography - instrumentation ; Electronics ; Electrons ; Engineering ; Engineering Fluid Dynamics ; Equipment Design ; Fabrication ; Lithography ; Male ; Miniaturization ; Nanotechnology ; Platinum ; Printing ; Printing, Three-Dimensional ; Prototyping ; Pyrolysis ; Rats, Sprague-Dawley ; Signal-To-Noise Ratio ; Spectroscopy ; Thermogravimetry ; Three dimensional printing</subject><ispartof>Biomedical microdevices, 2018-03, Vol.20 (1), p.4-9, Article 4</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Biomedical Microdevices is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-775ef362fa46341578481cd0821909f3f7f16acd78c20dcd0745b881fc63cc8c3</citedby><cites>FETCH-LOGICAL-c430t-775ef362fa46341578481cd0821909f3f7f16acd78c20dcd0745b881fc63cc8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-017-0247-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-017-0247-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29170867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Pan</creatorcontrib><creatorcontrib>Chen, Chaoyang</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Qi, Jin</creatorcontrib><creatorcontrib>Wang, Qianghua</creatorcontrib><creatorcontrib>Chen, Jimmy Ching-Ming</creatorcontrib><creatorcontrib>Cavanaugh, John</creatorcontrib><creatorcontrib>Peng, Yinghong</creatorcontrib><creatorcontrib>Cheng, Mark Ming-Cheng</creatorcontrib><title>A novel fabrication method of carbon electrodes using 3D printing and chemical modification process</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.</description><subject>3-D printers</subject><subject>Animals</subject><subject>Biological and Medical Physics</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Chemical modification</subject><subject>Dielectric Spectroscopy</subject><subject>Electric Conductivity</subject><subject>Electric Stimulation - instrumentation</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Electromyography</subject><subject>Electromyography - instrumentation</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Equipment Design</subject><subject>Fabrication</subject><subject>Lithography</subject><subject>Male</subject><subject>Miniaturization</subject><subject>Nanotechnology</subject><subject>Platinum</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Prototyping</subject><subject>Pyrolysis</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal-To-Noise Ratio</subject><subject>Spectroscopy</subject><subject>Thermogravimetry</subject><subject>Three dimensional printing</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU9PAyEQxYnR2Fr9AF4MiRcvq7BQhh6b-jdp4kXPhGWh3WZ3qbBr4reXTVtjTDwxgd-84c1D6JKSW0oI3EVKppxnhEJGcg4ZO0JjOoU8kyDpcaqZhCynIEboLMYNIXQmhDhFo3xGgUgBY2TmuPWftsZOF6Eyuqt8ixvbrX2JvcNGhyJd2NqaLvjSRtzHql1hdo-3oWq7odZtic3aNqm7xo0vK3fQ2QZvbIzn6MTpOtqL_TlB748Pb4vnbPn69LKYLzPDGekygKl1TOROc8F48iG5pKYkMqczMnPMgaNCmxKkyUmZHoBPCympM4IZIw2boJudbpr70dvYqaaKxta1bq3vo0ruJedUEpnQ6z_oxvehTb8bKABIi2KJojvKBB9jsE4l040OX4oSNSSgdgmolIAaElBDz9VeuS8aW_50HFaegHwHxGGDKxt-jf5X9RuafZBj</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Tian, Pan</creator><creator>Chen, Chaoyang</creator><creator>Hu, Jie</creator><creator>Qi, Jin</creator><creator>Wang, Qianghua</creator><creator>Chen, Jimmy Ching-Ming</creator><creator>Cavanaugh, John</creator><creator>Peng, Yinghong</creator><creator>Cheng, Mark Ming-Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>A novel fabrication method of carbon electrodes using 3D printing and chemical modification process</title><author>Tian, Pan ; Chen, Chaoyang ; Hu, Jie ; Qi, Jin ; Wang, Qianghua ; Chen, Jimmy Ching-Ming ; Cavanaugh, John ; Peng, Yinghong ; Cheng, Mark Ming-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-775ef362fa46341578481cd0821909f3f7f16acd78c20dcd0745b881fc63cc8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>Animals</topic><topic>Biological and Medical Physics</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Chemical modification</topic><topic>Dielectric Spectroscopy</topic><topic>Electric Conductivity</topic><topic>Electric Stimulation - instrumentation</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Electromyography</topic><topic>Electromyography - instrumentation</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Equipment Design</topic><topic>Fabrication</topic><topic>Lithography</topic><topic>Male</topic><topic>Miniaturization</topic><topic>Nanotechnology</topic><topic>Platinum</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Prototyping</topic><topic>Pyrolysis</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal-To-Noise Ratio</topic><topic>Spectroscopy</topic><topic>Thermogravimetry</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Pan</creatorcontrib><creatorcontrib>Chen, Chaoyang</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Qi, Jin</creatorcontrib><creatorcontrib>Wang, Qianghua</creatorcontrib><creatorcontrib>Chen, Jimmy Ching-Ming</creatorcontrib><creatorcontrib>Cavanaugh, John</creatorcontrib><creatorcontrib>Peng, Yinghong</creatorcontrib><creatorcontrib>Cheng, Mark Ming-Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Pan</au><au>Chen, Chaoyang</au><au>Hu, Jie</au><au>Qi, Jin</au><au>Wang, Qianghua</au><au>Chen, Jimmy Ching-Ming</au><au>Cavanaugh, John</au><au>Peng, Yinghong</au><au>Cheng, Mark Ming-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel fabrication method of carbon electrodes using 3D printing and chemical modification process</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>20</volume><issue>1</issue><spage>4</spage><epage>9</epage><pages>4-9</pages><artnum>4</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29170867</pmid><doi>10.1007/s10544-017-0247-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2018-03, Vol.20 (1), p.4-9, Article 4 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_proquest_miscellaneous_1968441808 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 3-D printers Animals Biological and Medical Physics Biomedical engineering Biomedical Engineering and Bioengineering Biophysics Capacitance Carbon Carbon - chemistry Chemical modification Dielectric Spectroscopy Electric Conductivity Electric Stimulation - instrumentation Electrochemical analysis Electrochemical impedance spectroscopy Electrochemistry Electrodes Electrodes, Implanted Electromyography Electromyography - instrumentation Electronics Electrons Engineering Engineering Fluid Dynamics Equipment Design Fabrication Lithography Male Miniaturization Nanotechnology Platinum Printing Printing, Three-Dimensional Prototyping Pyrolysis Rats, Sprague-Dawley Signal-To-Noise Ratio Spectroscopy Thermogravimetry Three dimensional printing |
title | A novel fabrication method of carbon electrodes using 3D printing and chemical modification process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20fabrication%20method%20of%20carbon%20electrodes%20using%203D%20printing%20and%20chemical%20modification%20process&rft.jtitle=Biomedical%20microdevices&rft.au=Tian,%20Pan&rft.date=2018-03-01&rft.volume=20&rft.issue=1&rft.spage=4&rft.epage=9&rft.pages=4-9&rft.artnum=4&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-017-0247-3&rft_dat=%3Cproquest_cross%3E1968441808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967779663&rft_id=info:pmid/29170867&rfr_iscdi=true |