A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts

Radiation-induced bystander effect has been well documented. However, the mechanisms are poorly understood. How we incorporate this effect into the classical models of risk assessment remains an open question. Here, the induction of bystander effect was studied by assessing DNA double-strand break (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2006-12, Vol.122 (1-4), p.256-259
Hauptverfasser: Smilenov, L. B., Hall, E. J., Bonner, W. M., Sedelnikova, O. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 1-4
container_start_page 256
container_title Radiation protection dosimetry
container_volume 122
creator Smilenov, L. B.
Hall, E. J.
Bonner, W. M.
Sedelnikova, O. A.
description Radiation-induced bystander effect has been well documented. However, the mechanisms are poorly understood. How we incorporate this effect into the classical models of risk assessment remains an open question. Here, the induction of bystander effect was studied by assessing DNA double-strand break (DSB) formation in situ with the rapid and sensitive γ-H2AX focus formation assay. Utilising the Columbia University single-cell microbeam system to deliver 2 or 20 individual alpha particles to selected cell nuclei in a precisely known proportion of cells in a population, the induced DNA DSB incidences were quantified 30 min and 18 h post-IR. The increase in DNA DSB incidence in bystander cells lacked of a linear dose response indicating that neither the dose of irradiation nor proportion of irradiated cells in a population, is a critical parameter. This study confirms a binary all-or-nothing model of triggering the bystander response. The delay and persistence of the bystander response suggests a different mechanism of DSB induction in bystander cells than in directly irradiated cells.
doi_str_mv 10.1093/rpd/ncl461
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19679081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19679081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-a2135a31d34e178aba65fe8bff14a587d68cc90031e8c71fd8eab250632f36383</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWqsXf4Dk5EFYm9lkk-yx1I-KRT1UKl5Cspvg6n7UZBfsvzfSoqdhZh5eZh6EzoBcAcnpxK_LSVvUjMMeGoFgaUIZ4ftoRICxRLKUHKHjED4ISUWesUN0BAI4i80ILae4qQrfGasbHPqh3ODO4evHKS67wdQ2Cb3XbYmNt_oz4KrFZhP6OLEer33VaL_B70OjW-wqE2NqHfpwgg6croM93dUxerm9Wc7myeLp7n42XSRFvKlPdAo00xRKyiwIqY3mmbPSOAdMZ1KUXBZFTggFKwsBrpRWmzQjnKaOcirpGF1sc9e--xps6FVThcLWtW5tNwQFORc5kRDByy0YPw3BW6d2tysg6tehig7V1mGEz3epg2ls-Y_upEUg2QJV6O333177T8UFFZmav74pYCvOVw_Pakl_AMy-fSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19679081</pqid></control><display><type>article</type><title>A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Smilenov, L. B. ; Hall, E. J. ; Bonner, W. M. ; Sedelnikova, O. A.</creator><creatorcontrib>Smilenov, L. B. ; Hall, E. J. ; Bonner, W. M. ; Sedelnikova, O. A.</creatorcontrib><description>Radiation-induced bystander effect has been well documented. However, the mechanisms are poorly understood. How we incorporate this effect into the classical models of risk assessment remains an open question. Here, the induction of bystander effect was studied by assessing DNA double-strand break (DSB) formation in situ with the rapid and sensitive γ-H2AX focus formation assay. Utilising the Columbia University single-cell microbeam system to deliver 2 or 20 individual alpha particles to selected cell nuclei in a precisely known proportion of cells in a population, the induced DNA DSB incidences were quantified 30 min and 18 h post-IR. The increase in DNA DSB incidence in bystander cells lacked of a linear dose response indicating that neither the dose of irradiation nor proportion of irradiated cells in a population, is a critical parameter. This study confirms a binary all-or-nothing model of triggering the bystander response. The delay and persistence of the bystander response suggests a different mechanism of DSB induction in bystander cells than in directly irradiated cells.</description><identifier>ISSN: 0144-8420</identifier><identifier>EISSN: 1742-3406</identifier><identifier>DOI: 10.1093/rpd/ncl461</identifier><identifier>PMID: 17164279</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alpha Particles ; Bystander Effect - physiology ; Bystander Effect - radiation effects ; Cell Line ; DNA - genetics ; DNA - radiation effects ; DNA Damage ; Dose-Response Relationship, Radiation ; Fibroblasts - physiology ; Fibroblasts - radiation effects ; Humans ; Radiation Dosage ; Radiation Tolerance - physiology ; Radiation Tolerance - radiation effects</subject><ispartof>Radiation protection dosimetry, 2006-12, Vol.122 (1-4), p.256-259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-a2135a31d34e178aba65fe8bff14a587d68cc90031e8c71fd8eab250632f36383</citedby><cites>FETCH-LOGICAL-c420t-a2135a31d34e178aba65fe8bff14a587d68cc90031e8c71fd8eab250632f36383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17164279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smilenov, L. B.</creatorcontrib><creatorcontrib>Hall, E. J.</creatorcontrib><creatorcontrib>Bonner, W. M.</creatorcontrib><creatorcontrib>Sedelnikova, O. A.</creatorcontrib><title>A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts</title><title>Radiation protection dosimetry</title><addtitle>Radiat Prot Dosimetry</addtitle><description>Radiation-induced bystander effect has been well documented. However, the mechanisms are poorly understood. How we incorporate this effect into the classical models of risk assessment remains an open question. Here, the induction of bystander effect was studied by assessing DNA double-strand break (DSB) formation in situ with the rapid and sensitive γ-H2AX focus formation assay. Utilising the Columbia University single-cell microbeam system to deliver 2 or 20 individual alpha particles to selected cell nuclei in a precisely known proportion of cells in a population, the induced DNA DSB incidences were quantified 30 min and 18 h post-IR. The increase in DNA DSB incidence in bystander cells lacked of a linear dose response indicating that neither the dose of irradiation nor proportion of irradiated cells in a population, is a critical parameter. This study confirms a binary all-or-nothing model of triggering the bystander response. The delay and persistence of the bystander response suggests a different mechanism of DSB induction in bystander cells than in directly irradiated cells.</description><subject>Alpha Particles</subject><subject>Bystander Effect - physiology</subject><subject>Bystander Effect - radiation effects</subject><subject>Cell Line</subject><subject>DNA - genetics</subject><subject>DNA - radiation effects</subject><subject>DNA Damage</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Fibroblasts - physiology</subject><subject>Fibroblasts - radiation effects</subject><subject>Humans</subject><subject>Radiation Dosage</subject><subject>Radiation Tolerance - physiology</subject><subject>Radiation Tolerance - radiation effects</subject><issn>0144-8420</issn><issn>1742-3406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LAzEQhoMoWqsXf4Dk5EFYm9lkk-yx1I-KRT1UKl5Cspvg6n7UZBfsvzfSoqdhZh5eZh6EzoBcAcnpxK_LSVvUjMMeGoFgaUIZ4ftoRICxRLKUHKHjED4ISUWesUN0BAI4i80ILae4qQrfGasbHPqh3ODO4evHKS67wdQ2Cb3XbYmNt_oz4KrFZhP6OLEer33VaL_B70OjW-wqE2NqHfpwgg6croM93dUxerm9Wc7myeLp7n42XSRFvKlPdAo00xRKyiwIqY3mmbPSOAdMZ1KUXBZFTggFKwsBrpRWmzQjnKaOcirpGF1sc9e--xps6FVThcLWtW5tNwQFORc5kRDByy0YPw3BW6d2tysg6tehig7V1mGEz3epg2ls-Y_upEUg2QJV6O333177T8UFFZmav74pYCvOVw_Pakl_AMy-fSg</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Smilenov, L. B.</creator><creator>Hall, E. J.</creator><creator>Bonner, W. M.</creator><creator>Sedelnikova, O. A.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20061201</creationdate><title>A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts</title><author>Smilenov, L. B. ; Hall, E. J. ; Bonner, W. M. ; Sedelnikova, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-a2135a31d34e178aba65fe8bff14a587d68cc90031e8c71fd8eab250632f36383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alpha Particles</topic><topic>Bystander Effect - physiology</topic><topic>Bystander Effect - radiation effects</topic><topic>Cell Line</topic><topic>DNA - genetics</topic><topic>DNA - radiation effects</topic><topic>DNA Damage</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Fibroblasts - physiology</topic><topic>Fibroblasts - radiation effects</topic><topic>Humans</topic><topic>Radiation Dosage</topic><topic>Radiation Tolerance - physiology</topic><topic>Radiation Tolerance - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smilenov, L. B.</creatorcontrib><creatorcontrib>Hall, E. J.</creatorcontrib><creatorcontrib>Bonner, W. M.</creatorcontrib><creatorcontrib>Sedelnikova, O. A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Radiation protection dosimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smilenov, L. B.</au><au>Hall, E. J.</au><au>Bonner, W. M.</au><au>Sedelnikova, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts</atitle><jtitle>Radiation protection dosimetry</jtitle><addtitle>Radiat Prot Dosimetry</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>122</volume><issue>1-4</issue><spage>256</spage><epage>259</epage><pages>256-259</pages><issn>0144-8420</issn><eissn>1742-3406</eissn><abstract>Radiation-induced bystander effect has been well documented. However, the mechanisms are poorly understood. How we incorporate this effect into the classical models of risk assessment remains an open question. Here, the induction of bystander effect was studied by assessing DNA double-strand break (DSB) formation in situ with the rapid and sensitive γ-H2AX focus formation assay. Utilising the Columbia University single-cell microbeam system to deliver 2 or 20 individual alpha particles to selected cell nuclei in a precisely known proportion of cells in a population, the induced DNA DSB incidences were quantified 30 min and 18 h post-IR. The increase in DNA DSB incidence in bystander cells lacked of a linear dose response indicating that neither the dose of irradiation nor proportion of irradiated cells in a population, is a critical parameter. This study confirms a binary all-or-nothing model of triggering the bystander response. The delay and persistence of the bystander response suggests a different mechanism of DSB induction in bystander cells than in directly irradiated cells.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17164279</pmid><doi>10.1093/rpd/ncl461</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8420
ispartof Radiation protection dosimetry, 2006-12, Vol.122 (1-4), p.256-259
issn 0144-8420
1742-3406
language eng
recordid cdi_proquest_miscellaneous_19679081
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Alpha Particles
Bystander Effect - physiology
Bystander Effect - radiation effects
Cell Line
DNA - genetics
DNA - radiation effects
DNA Damage
Dose-Response Relationship, Radiation
Fibroblasts - physiology
Fibroblasts - radiation effects
Humans
Radiation Dosage
Radiation Tolerance - physiology
Radiation Tolerance - radiation effects
title A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microbeam%20study%20of%20DNA%20double-strand%20breaks%20in%20bystander%20primary%20human%20fibroblasts&rft.jtitle=Radiation%20protection%20dosimetry&rft.au=Smilenov,%20L.%20B.&rft.date=2006-12-01&rft.volume=122&rft.issue=1-4&rft.spage=256&rft.epage=259&rft.pages=256-259&rft.issn=0144-8420&rft.eissn=1742-3406&rft_id=info:doi/10.1093/rpd/ncl461&rft_dat=%3Cproquest_cross%3E19679081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19679081&rft_id=info:pmid/17164279&rfr_iscdi=true