Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal
The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properti...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2017-12, Vol.9 (12), p.1170-1174 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 12 |
container_start_page | 1170 |
container_title | Nature chemistry |
container_volume | 9 |
creator | O'Brien, Evan S. Trinh, M. Tuan Kann, Rose L. Chen, Jia Elbaz, Giselle A. Masurkar, Amrita Atallah, Timothy L. Paley, Maria V. Patel, Nilam Paley, Daniel W. Kymissis, Ioannis Crowther, Andrew C. Millis, Andrew J. Reichman, David R. Zhu, X.-Y. Roy, Xavier |
description | The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.
Intercalation — a cornerstone of materials science with wide-ranging applications — has now been demonstrated in a superatomic crystal. A redox-active tetracyanoethylene guest was inserted into the lattice of a material consisting of alternate layers of {Co
6
Te
8
} clusters and C
60
fullerenes, leading to a single-crystal-to-single-crystal transformation that significantly modulates the material's optical and electrical transport properties. |
doi_str_mv | 10.1038/nchem.2844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1967861714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967861714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4b52ffdeb2aca95a594dd0c2f342044bb8b400979b902baacf31f06ced457f6f3</originalsourceid><addsrcrecordid>eNpl0E1PwyAcBnBiNE6nFz-AaeLFaJjQUihHs_iWLPEwPTdAYXZpoUIbs28vc3Px5QSBH8-fPACcYTTBKCturHrT7SQtCNkDR5jlOSQZ4fu7fYZG4DiEJUI0zzA9BKOUY1oQjo7AfF7bRaOh8qvQiwb2DoZfJ0lte-2VaERfO5s4k4ikcR9QClstRJeEodNe9K6tVbJ9cgIOjGiCPt2uY_B6f_cyfYSz54en6e0MKoJZD4nMU2MqLVOhBM9FzklVIZWajKSIECkLSRDijEuOUimEMhk2iCpdkZwZarIxuNzkdt69Dzr0ZVsHpZtGWO2GUGJOWUExwyTSiz906QZv4--iYpxRTosiqquNUt6F4LUpO1-3wq9KjMp11eVX1eW66ojPt5GDbHW1o9_dRnC9ASFe2YX2P2b-j_sEYm-KFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979769688</pqid></control><display><type>article</type><title>Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>O'Brien, Evan S. ; Trinh, M. Tuan ; Kann, Rose L. ; Chen, Jia ; Elbaz, Giselle A. ; Masurkar, Amrita ; Atallah, Timothy L. ; Paley, Maria V. ; Patel, Nilam ; Paley, Daniel W. ; Kymissis, Ioannis ; Crowther, Andrew C. ; Millis, Andrew J. ; Reichman, David R. ; Zhu, X.-Y. ; Roy, Xavier</creator><creatorcontrib>O'Brien, Evan S. ; Trinh, M. Tuan ; Kann, Rose L. ; Chen, Jia ; Elbaz, Giselle A. ; Masurkar, Amrita ; Atallah, Timothy L. ; Paley, Maria V. ; Patel, Nilam ; Paley, Daniel W. ; Kymissis, Ioannis ; Crowther, Andrew C. ; Millis, Andrew J. ; Reichman, David R. ; Zhu, X.-Y. ; Roy, Xavier</creatorcontrib><description>The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.
Intercalation — a cornerstone of materials science with wide-ranging applications — has now been demonstrated in a superatomic crystal. A redox-active tetracyanoethylene guest was inserted into the lattice of a material consisting of alternate layers of {Co
6
Te
8
} clusters and C
60
fullerenes, leading to a single-crystal-to-single-crystal transformation that significantly modulates the material's optical and electrical transport properties.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2844</identifier><identifier>PMID: 29168490</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/923/966 ; 639/638/541/966 ; 639/925/357/404 ; 639/925/357/73 ; Absorption spectroscopy ; Analytical Chemistry ; Atomic structure ; Biochemistry ; Buckminsterfullerene ; Charge exchange ; Chemistry ; Chemistry/Food Science ; Crystal lattices ; Crystal structure ; Crystals ; Electronic structure ; Fullerenes ; Impurities ; Inorganic Chemistry ; Intercalation ; Magnetic properties ; Materials science ; Molecular clusters ; Optical properties ; Organic Chemistry ; Physical Chemistry ; Single crystals ; Spectroscopy</subject><ispartof>Nature chemistry, 2017-12, Vol.9 (12), p.1170-1174</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4b52ffdeb2aca95a594dd0c2f342044bb8b400979b902baacf31f06ced457f6f3</citedby><cites>FETCH-LOGICAL-c417t-4b52ffdeb2aca95a594dd0c2f342044bb8b400979b902baacf31f06ced457f6f3</cites><orcidid>0000-0001-7417-1759 ; 0000-0002-8850-0725 ; 0000-0001-8393-5669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2844$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2844$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29168490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Brien, Evan S.</creatorcontrib><creatorcontrib>Trinh, M. Tuan</creatorcontrib><creatorcontrib>Kann, Rose L.</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Elbaz, Giselle A.</creatorcontrib><creatorcontrib>Masurkar, Amrita</creatorcontrib><creatorcontrib>Atallah, Timothy L.</creatorcontrib><creatorcontrib>Paley, Maria V.</creatorcontrib><creatorcontrib>Patel, Nilam</creatorcontrib><creatorcontrib>Paley, Daniel W.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><creatorcontrib>Crowther, Andrew C.</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Zhu, X.-Y.</creatorcontrib><creatorcontrib>Roy, Xavier</creatorcontrib><title>Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.
Intercalation — a cornerstone of materials science with wide-ranging applications — has now been demonstrated in a superatomic crystal. A redox-active tetracyanoethylene guest was inserted into the lattice of a material consisting of alternate layers of {Co
6
Te
8
} clusters and C
60
fullerenes, leading to a single-crystal-to-single-crystal transformation that significantly modulates the material's optical and electrical transport properties.</description><subject>639/638/298/923/966</subject><subject>639/638/541/966</subject><subject>639/925/357/404</subject><subject>639/925/357/73</subject><subject>Absorption spectroscopy</subject><subject>Analytical Chemistry</subject><subject>Atomic structure</subject><subject>Biochemistry</subject><subject>Buckminsterfullerene</subject><subject>Charge exchange</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electronic structure</subject><subject>Fullerenes</subject><subject>Impurities</subject><subject>Inorganic Chemistry</subject><subject>Intercalation</subject><subject>Magnetic properties</subject><subject>Materials science</subject><subject>Molecular clusters</subject><subject>Optical properties</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Single crystals</subject><subject>Spectroscopy</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1PwyAcBnBiNE6nFz-AaeLFaJjQUihHs_iWLPEwPTdAYXZpoUIbs28vc3Px5QSBH8-fPACcYTTBKCturHrT7SQtCNkDR5jlOSQZ4fu7fYZG4DiEJUI0zzA9BKOUY1oQjo7AfF7bRaOh8qvQiwb2DoZfJ0lte-2VaERfO5s4k4ikcR9QClstRJeEodNe9K6tVbJ9cgIOjGiCPt2uY_B6f_cyfYSz54en6e0MKoJZD4nMU2MqLVOhBM9FzklVIZWajKSIECkLSRDijEuOUimEMhk2iCpdkZwZarIxuNzkdt69Dzr0ZVsHpZtGWO2GUGJOWUExwyTSiz906QZv4--iYpxRTosiqquNUt6F4LUpO1-3wq9KjMp11eVX1eW66ojPt5GDbHW1o9_dRnC9ASFe2YX2P2b-j_sEYm-KFQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>O'Brien, Evan S.</creator><creator>Trinh, M. Tuan</creator><creator>Kann, Rose L.</creator><creator>Chen, Jia</creator><creator>Elbaz, Giselle A.</creator><creator>Masurkar, Amrita</creator><creator>Atallah, Timothy L.</creator><creator>Paley, Maria V.</creator><creator>Patel, Nilam</creator><creator>Paley, Daniel W.</creator><creator>Kymissis, Ioannis</creator><creator>Crowther, Andrew C.</creator><creator>Millis, Andrew J.</creator><creator>Reichman, David R.</creator><creator>Zhu, X.-Y.</creator><creator>Roy, Xavier</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7417-1759</orcidid><orcidid>https://orcid.org/0000-0002-8850-0725</orcidid><orcidid>https://orcid.org/0000-0001-8393-5669</orcidid></search><sort><creationdate>20171201</creationdate><title>Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal</title><author>O'Brien, Evan S. ; Trinh, M. Tuan ; Kann, Rose L. ; Chen, Jia ; Elbaz, Giselle A. ; Masurkar, Amrita ; Atallah, Timothy L. ; Paley, Maria V. ; Patel, Nilam ; Paley, Daniel W. ; Kymissis, Ioannis ; Crowther, Andrew C. ; Millis, Andrew J. ; Reichman, David R. ; Zhu, X.-Y. ; Roy, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4b52ffdeb2aca95a594dd0c2f342044bb8b400979b902baacf31f06ced457f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/638/298/923/966</topic><topic>639/638/541/966</topic><topic>639/925/357/404</topic><topic>639/925/357/73</topic><topic>Absorption spectroscopy</topic><topic>Analytical Chemistry</topic><topic>Atomic structure</topic><topic>Biochemistry</topic><topic>Buckminsterfullerene</topic><topic>Charge exchange</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electronic structure</topic><topic>Fullerenes</topic><topic>Impurities</topic><topic>Inorganic Chemistry</topic><topic>Intercalation</topic><topic>Magnetic properties</topic><topic>Materials science</topic><topic>Molecular clusters</topic><topic>Optical properties</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Single crystals</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Brien, Evan S.</creatorcontrib><creatorcontrib>Trinh, M. Tuan</creatorcontrib><creatorcontrib>Kann, Rose L.</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Elbaz, Giselle A.</creatorcontrib><creatorcontrib>Masurkar, Amrita</creatorcontrib><creatorcontrib>Atallah, Timothy L.</creatorcontrib><creatorcontrib>Paley, Maria V.</creatorcontrib><creatorcontrib>Patel, Nilam</creatorcontrib><creatorcontrib>Paley, Daniel W.</creatorcontrib><creatorcontrib>Kymissis, Ioannis</creatorcontrib><creatorcontrib>Crowther, Andrew C.</creatorcontrib><creatorcontrib>Millis, Andrew J.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Zhu, X.-Y.</creatorcontrib><creatorcontrib>Roy, Xavier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Brien, Evan S.</au><au>Trinh, M. Tuan</au><au>Kann, Rose L.</au><au>Chen, Jia</au><au>Elbaz, Giselle A.</au><au>Masurkar, Amrita</au><au>Atallah, Timothy L.</au><au>Paley, Maria V.</au><au>Patel, Nilam</au><au>Paley, Daniel W.</au><au>Kymissis, Ioannis</au><au>Crowther, Andrew C.</au><au>Millis, Andrew J.</au><au>Reichman, David R.</au><au>Zhu, X.-Y.</au><au>Roy, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>9</volume><issue>12</issue><spage>1170</spage><epage>1174</epage><pages>1170-1174</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co
6
Te
8
(P
n
Pr
3
)
6
][C
60
]
3
and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.
Intercalation — a cornerstone of materials science with wide-ranging applications — has now been demonstrated in a superatomic crystal. A redox-active tetracyanoethylene guest was inserted into the lattice of a material consisting of alternate layers of {Co
6
Te
8
} clusters and C
60
fullerenes, leading to a single-crystal-to-single-crystal transformation that significantly modulates the material's optical and electrical transport properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29168490</pmid><doi>10.1038/nchem.2844</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7417-1759</orcidid><orcidid>https://orcid.org/0000-0002-8850-0725</orcidid><orcidid>https://orcid.org/0000-0001-8393-5669</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2017-12, Vol.9 (12), p.1170-1174 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1967861714 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/638/298/923/966 639/638/541/966 639/925/357/404 639/925/357/73 Absorption spectroscopy Analytical Chemistry Atomic structure Biochemistry Buckminsterfullerene Charge exchange Chemistry Chemistry/Food Science Crystal lattices Crystal structure Crystals Electronic structure Fullerenes Impurities Inorganic Chemistry Intercalation Magnetic properties Materials science Molecular clusters Optical properties Organic Chemistry Physical Chemistry Single crystals Spectroscopy |
title | Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-crystal-to-single-crystal%20intercalation%20of%20a%20low-bandgap%20superatomic%20crystal&rft.jtitle=Nature%20chemistry&rft.au=O'Brien,%20Evan%20S.&rft.date=2017-12-01&rft.volume=9&rft.issue=12&rft.spage=1170&rft.epage=1174&rft.pages=1170-1174&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2844&rft_dat=%3Cproquest_cross%3E1967861714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979769688&rft_id=info:pmid/29168490&rfr_iscdi=true |