Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages
Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevent...
Gespeichert in:
Veröffentlicht in: | Cellular microbiology 2018-03, Vol.20 (3), p.e12813-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e12813 |
container_title | Cellular microbiology |
container_volume | 20 |
creator | Hop, Huynh Tan Arayan, Lauren Togonon Huy, Tran Xuan Ngoc Reyes, Alisha Wehdnesday Bernardo Baek, Eun Jin Min, Wongi Lee, Hu Jang Rhee, Man Hee Watanabe, Kenta Chang, Hong Hee Kim, Suk |
description | Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti‐inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2‐induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro‐inflammatory brucellacidal activity in murine macrophages. |
doi_str_mv | 10.1111/cmi.12813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1967860225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999438272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-ac11fdbb2d0f50035c00bbf7625d44e40a7c43ec4c20ce8554462b18fef372173</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMo7gdfQAJe9DBjtl7mqIMbjAiieGzS6coY7U7apIPMI_jWxhn1IJhLQvHlo6p-hA4oGdN0TlVnxpSVlK-hbSpyNspKxtZ_31RsoZ0QXgiheUHpJtpiE5qXXPBt9DEzvVOyNRYzfDxTlp1gYwfwGjwE_G6GZ2y8szj2g3wFXC_wuY8K2lZiWTs_xIClbXAjux5swKbronUe5rGVg0n_muiNnSenBrUsOI3vz54wy8W4wJ1U3vXPcg5hD21o2QbY_7530ePlxcP0ejS7u7qZns1Gimecj6SiVDd1zRqiM0J4pgipa13kLGuEAEFkoQQHJRQjCsosE2kJNS01aF4wWvBddLzy9t69RQhD1ZmwHMiCi6Gik7woc8JYltCjP-iLi96m7hI1mQhesoIl6mRFpVFC8KCr3ptO-kVFSfWVT5XyqZb5JPbw2xjrDppf8ieQBJyugHfTwuJ_UzW9vVkpPwHn05kh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999438272</pqid></control><display><type>article</type><title>Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hop, Huynh Tan ; Arayan, Lauren Togonon ; Huy, Tran Xuan Ngoc ; Reyes, Alisha Wehdnesday Bernardo ; Baek, Eun Jin ; Min, Wongi ; Lee, Hu Jang ; Rhee, Man Hee ; Watanabe, Kenta ; Chang, Hong Hee ; Kim, Suk</creator><creatorcontrib>Hop, Huynh Tan ; Arayan, Lauren Togonon ; Huy, Tran Xuan Ngoc ; Reyes, Alisha Wehdnesday Bernardo ; Baek, Eun Jin ; Min, Wongi ; Lee, Hu Jang ; Rhee, Man Hee ; Watanabe, Kenta ; Chang, Hong Hee ; Kim, Suk</creatorcontrib><description>Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti‐inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2‐induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro‐inflammatory brucellacidal activity in murine macrophages.</description><identifier>ISSN: 1462-5814</identifier><identifier>EISSN: 1462-5822</identifier><identifier>DOI: 10.1111/cmi.12813</identifier><identifier>PMID: 29168343</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Animals ; apoptosis ; Brucella ; Brucella abortus ; Brucella abortus - immunology ; Brucella abortus - metabolism ; Brucella abortus - pathogenicity ; Cation Transport Proteins - metabolism ; Cytokines ; Immunity ; Immunity, Innate - physiology ; Immunoregulation ; Infections ; Inflammation ; Innate immunity ; Interleukin 10 ; Interleukin 6 ; Intracellular ; Iron ; Iron - metabolism ; iron sequestrating ; Lipocalin ; lipocalin 2 ; Lipocalin-2 - metabolism ; Macrophages ; Macrophages - metabolism ; Macrophages - microbiology ; Mice ; Nitric oxide ; RAW 264.7 Cells ; Reactive oxygen species ; ROS ; Signal transduction ; Signaling</subject><ispartof>Cellular microbiology, 2018-03, Vol.20 (3), p.e12813-n/a</ispartof><rights>2017 John Wiley & Sons Ltd</rights><rights>2017 John Wiley & Sons Ltd.</rights><rights>2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-ac11fdbb2d0f50035c00bbf7625d44e40a7c43ec4c20ce8554462b18fef372173</citedby><cites>FETCH-LOGICAL-c3533-ac11fdbb2d0f50035c00bbf7625d44e40a7c43ec4c20ce8554462b18fef372173</cites><orcidid>0000-0001-5795-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcmi.12813$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcmi.12813$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29168343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hop, Huynh Tan</creatorcontrib><creatorcontrib>Arayan, Lauren Togonon</creatorcontrib><creatorcontrib>Huy, Tran Xuan Ngoc</creatorcontrib><creatorcontrib>Reyes, Alisha Wehdnesday Bernardo</creatorcontrib><creatorcontrib>Baek, Eun Jin</creatorcontrib><creatorcontrib>Min, Wongi</creatorcontrib><creatorcontrib>Lee, Hu Jang</creatorcontrib><creatorcontrib>Rhee, Man Hee</creatorcontrib><creatorcontrib>Watanabe, Kenta</creatorcontrib><creatorcontrib>Chang, Hong Hee</creatorcontrib><creatorcontrib>Kim, Suk</creatorcontrib><title>Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages</title><title>Cellular microbiology</title><addtitle>Cell Microbiol</addtitle><description>Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti‐inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2‐induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro‐inflammatory brucellacidal activity in murine macrophages.</description><subject>Animals</subject><subject>apoptosis</subject><subject>Brucella</subject><subject>Brucella abortus</subject><subject>Brucella abortus - immunology</subject><subject>Brucella abortus - metabolism</subject><subject>Brucella abortus - pathogenicity</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cytokines</subject><subject>Immunity</subject><subject>Immunity, Innate - physiology</subject><subject>Immunoregulation</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Interleukin 10</subject><subject>Interleukin 6</subject><subject>Intracellular</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>iron sequestrating</subject><subject>Lipocalin</subject><subject>lipocalin 2</subject><subject>Lipocalin-2 - metabolism</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Nitric oxide</subject><subject>RAW 264.7 Cells</subject><subject>Reactive oxygen species</subject><subject>ROS</subject><subject>Signal transduction</subject><subject>Signaling</subject><issn>1462-5814</issn><issn>1462-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kclKBDEQhoMo7gdfQAJe9DBjtl7mqIMbjAiieGzS6coY7U7apIPMI_jWxhn1IJhLQvHlo6p-hA4oGdN0TlVnxpSVlK-hbSpyNspKxtZ_31RsoZ0QXgiheUHpJtpiE5qXXPBt9DEzvVOyNRYzfDxTlp1gYwfwGjwE_G6GZ2y8szj2g3wFXC_wuY8K2lZiWTs_xIClbXAjux5swKbronUe5rGVg0n_muiNnSenBrUsOI3vz54wy8W4wJ1U3vXPcg5hD21o2QbY_7530ePlxcP0ejS7u7qZns1Gimecj6SiVDd1zRqiM0J4pgipa13kLGuEAEFkoQQHJRQjCsosE2kJNS01aF4wWvBddLzy9t69RQhD1ZmwHMiCi6Gik7woc8JYltCjP-iLi96m7hI1mQhesoIl6mRFpVFC8KCr3ptO-kVFSfWVT5XyqZb5JPbw2xjrDppf8ieQBJyugHfTwuJ_UzW9vVkpPwHn05kh</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Hop, Huynh Tan</creator><creator>Arayan, Lauren Togonon</creator><creator>Huy, Tran Xuan Ngoc</creator><creator>Reyes, Alisha Wehdnesday Bernardo</creator><creator>Baek, Eun Jin</creator><creator>Min, Wongi</creator><creator>Lee, Hu Jang</creator><creator>Rhee, Man Hee</creator><creator>Watanabe, Kenta</creator><creator>Chang, Hong Hee</creator><creator>Kim, Suk</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5795-2019</orcidid></search><sort><creationdate>201803</creationdate><title>Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages</title><author>Hop, Huynh Tan ; Arayan, Lauren Togonon ; Huy, Tran Xuan Ngoc ; Reyes, Alisha Wehdnesday Bernardo ; Baek, Eun Jin ; Min, Wongi ; Lee, Hu Jang ; Rhee, Man Hee ; Watanabe, Kenta ; Chang, Hong Hee ; Kim, Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-ac11fdbb2d0f50035c00bbf7625d44e40a7c43ec4c20ce8554462b18fef372173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>apoptosis</topic><topic>Brucella</topic><topic>Brucella abortus</topic><topic>Brucella abortus - immunology</topic><topic>Brucella abortus - metabolism</topic><topic>Brucella abortus - pathogenicity</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cytokines</topic><topic>Immunity</topic><topic>Immunity, Innate - physiology</topic><topic>Immunoregulation</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Interleukin 10</topic><topic>Interleukin 6</topic><topic>Intracellular</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>iron sequestrating</topic><topic>Lipocalin</topic><topic>lipocalin 2</topic><topic>Lipocalin-2 - metabolism</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Nitric oxide</topic><topic>RAW 264.7 Cells</topic><topic>Reactive oxygen species</topic><topic>ROS</topic><topic>Signal transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hop, Huynh Tan</creatorcontrib><creatorcontrib>Arayan, Lauren Togonon</creatorcontrib><creatorcontrib>Huy, Tran Xuan Ngoc</creatorcontrib><creatorcontrib>Reyes, Alisha Wehdnesday Bernardo</creatorcontrib><creatorcontrib>Baek, Eun Jin</creatorcontrib><creatorcontrib>Min, Wongi</creatorcontrib><creatorcontrib>Lee, Hu Jang</creatorcontrib><creatorcontrib>Rhee, Man Hee</creatorcontrib><creatorcontrib>Watanabe, Kenta</creatorcontrib><creatorcontrib>Chang, Hong Hee</creatorcontrib><creatorcontrib>Kim, Suk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hop, Huynh Tan</au><au>Arayan, Lauren Togonon</au><au>Huy, Tran Xuan Ngoc</au><au>Reyes, Alisha Wehdnesday Bernardo</au><au>Baek, Eun Jin</au><au>Min, Wongi</au><au>Lee, Hu Jang</au><au>Rhee, Man Hee</au><au>Watanabe, Kenta</au><au>Chang, Hong Hee</au><au>Kim, Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages</atitle><jtitle>Cellular microbiology</jtitle><addtitle>Cell Microbiol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>20</volume><issue>3</issue><spage>e12813</spage><epage>n/a</epage><pages>e12813-n/a</pages><issn>1462-5814</issn><eissn>1462-5822</eissn><abstract>Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti‐inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2‐induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro‐inflammatory brucellacidal activity in murine macrophages.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>29168343</pmid><doi>10.1111/cmi.12813</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5795-2019</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-5814 |
ispartof | Cellular microbiology, 2018-03, Vol.20 (3), p.e12813-n/a |
issn | 1462-5814 1462-5822 |
language | eng |
recordid | cdi_proquest_miscellaneous_1967860225 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals apoptosis Brucella Brucella abortus Brucella abortus - immunology Brucella abortus - metabolism Brucella abortus - pathogenicity Cation Transport Proteins - metabolism Cytokines Immunity Immunity, Innate - physiology Immunoregulation Infections Inflammation Innate immunity Interleukin 10 Interleukin 6 Intracellular Iron Iron - metabolism iron sequestrating Lipocalin lipocalin 2 Lipocalin-2 - metabolism Macrophages Macrophages - metabolism Macrophages - microbiology Mice Nitric oxide RAW 264.7 Cells Reactive oxygen species ROS Signal transduction Signaling |
title | Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipocalin%202%20(Lcn2)%20interferes%20with%20iron%20uptake%20by%20Brucella%20abortus%20and%20dampens%20immunoregulation%20during%20infection%20of%20RAW%20264.7%20macrophages&rft.jtitle=Cellular%20microbiology&rft.au=Hop,%20Huynh%20Tan&rft.date=2018-03&rft.volume=20&rft.issue=3&rft.spage=e12813&rft.epage=n/a&rft.pages=e12813-n/a&rft.issn=1462-5814&rft.eissn=1462-5822&rft_id=info:doi/10.1111/cmi.12813&rft_dat=%3Cproquest_cross%3E1999438272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999438272&rft_id=info:pmid/29168343&rfr_iscdi=true |