The Rickiols: 20‐, 22‐, and 24‐membered Macrolides from the Ascomycete Hypoxylon rickii
In preceding studies the neotropical ascomycete Hypoxylon rickii turned out to be a prolific source of new secondary metabolites, considering that we had obtained terpenoids with five different scaffolds along with a series of terphenyls. From the mycelial extracts of a 70 L scale fermentation of th...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2018-02, Vol.24 (9), p.2200-2213 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2213 |
---|---|
container_issue | 9 |
container_start_page | 2200 |
container_title | Chemistry : a European journal |
container_volume | 24 |
creator | Surup, Frank Kuhnert, Eric Böhm, Andreas Pendzialek, Tim Solga, Danny Wiebach, Vincent Engler, Hauke Berkessel, Albrecht Stadler, Marc Kalesse, Markus |
description | In preceding studies the neotropical ascomycete Hypoxylon rickii turned out to be a prolific source of new secondary metabolites, considering that we had obtained terpenoids with five different scaffolds along with a series of terphenyls. From the mycelial extracts of a 70 L scale fermentation of this strain we additionally isolated nine new macrolides (1–9) by RP‐HPLC. The planar structures were elucidated by NMR spectroscopy complemented by HR‐ESIMS. The relative configurations were assigned by J‐based configuration analyses and confirmed by Kishi′s Universal Database. Subsequently, the absolute configurations were assigned by Mosher′s method using the shift analysis of a tetra‐MTPA derivative. For rickiol A (1) and E (5) we observed transesterification of 20‐membered ring structures to 22‐membered isomers rickiol A2 (6) and E2 (7), and to 24‐membered isomers rickiol A3 (8) and rickiol E3 (9), respectively. Cytotoxic effects and moderate antibiotic activity against Gram‐positive bacteria were observed for 1–8 and 1–6 and 8, respectively. The total synthesis of rickiol E3 (9) established easier access to these compounds.
Meet the Rickiols: If one solvent does not work for structure elucidation, then try another! To determine the stereo configuration of 20‐, 22‐, and 24‐membered macrolactones through J‐based analysis, the solvent had to be changed twice. Comprehensive analysis was confirmed with Kishi′s Universal Database, and finalized by Mosher′s method. The total synthesis of one representative confirmed the assignment. |
doi_str_mv | 10.1002/chem.201704928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1967860216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967860216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-c51adbae623a4580612bda8b3097af5d9a646bdf18f299b40890a1706651a8603</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EoqWwMiJLLAyk2E7i2GxVVShSKyRURhQ5tqOmJHGxG0E2PoFv5EtwaSkSC9N7w7lH710ATjHqY4TIlZzrqk8QTlDECdsDXRwTHIQJjfdBF_EoCWgc8g44cm6BEOI0DA9Bh3BMGUesC55mcw0fCvlcmNJdQ4I-3z8uISHfQ9QKksivla4ybbWCUyGtKQulHcytqeDKpwdOmqqVeqXhuF2at7Y0NbRrZXEMDnJROn2ynT3weDOaDcfB5P72bjiYBDJKKAtkjIXKhKYkFFHMEMUkU4JlIeKJyGPFBY1opnLMcsJ5FiF_u_AvU-qDjKKwBy423qU1L412q7QqnNRlKWptGpdiThPPEUw9ev4HXZjG1v46T3EeY-xL81R_Q_l3nbM6T5e2qIRtU4zSdfHpuvh0V7wPnG21TVZptcN_mvYA3wCvRanbf3TpcDya_sq_AHiHjzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999511947</pqid></control><display><type>article</type><title>The Rickiols: 20‐, 22‐, and 24‐membered Macrolides from the Ascomycete Hypoxylon rickii</title><source>Access via Wiley Online Library</source><creator>Surup, Frank ; Kuhnert, Eric ; Böhm, Andreas ; Pendzialek, Tim ; Solga, Danny ; Wiebach, Vincent ; Engler, Hauke ; Berkessel, Albrecht ; Stadler, Marc ; Kalesse, Markus</creator><creatorcontrib>Surup, Frank ; Kuhnert, Eric ; Böhm, Andreas ; Pendzialek, Tim ; Solga, Danny ; Wiebach, Vincent ; Engler, Hauke ; Berkessel, Albrecht ; Stadler, Marc ; Kalesse, Markus</creatorcontrib><description>In preceding studies the neotropical ascomycete Hypoxylon rickii turned out to be a prolific source of new secondary metabolites, considering that we had obtained terpenoids with five different scaffolds along with a series of terphenyls. From the mycelial extracts of a 70 L scale fermentation of this strain we additionally isolated nine new macrolides (1–9) by RP‐HPLC. The planar structures were elucidated by NMR spectroscopy complemented by HR‐ESIMS. The relative configurations were assigned by J‐based configuration analyses and confirmed by Kishi′s Universal Database. Subsequently, the absolute configurations were assigned by Mosher′s method using the shift analysis of a tetra‐MTPA derivative. For rickiol A (1) and E (5) we observed transesterification of 20‐membered ring structures to 22‐membered isomers rickiol A2 (6) and E2 (7), and to 24‐membered isomers rickiol A3 (8) and rickiol E3 (9), respectively. Cytotoxic effects and moderate antibiotic activity against Gram‐positive bacteria were observed for 1–8 and 1–6 and 8, respectively. The total synthesis of rickiol E3 (9) established easier access to these compounds.
Meet the Rickiols: If one solvent does not work for structure elucidation, then try another! To determine the stereo configuration of 20‐, 22‐, and 24‐membered macrolactones through J‐based analysis, the solvent had to be changed twice. Comprehensive analysis was confirmed with Kishi′s Universal Database, and finalized by Mosher′s method. The total synthesis of one representative confirmed the assignment.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201704928</identifier><identifier>PMID: 29168908</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antibiotics ; Chemistry ; Configurations ; Cytotoxicity ; Fermentation ; Gram-positive bacteria ; High-performance liquid chromatography ; Isomers ; Kishis′s Universal Database ; Liquid chromatography ; macrolide ; Magnetic resonance spectroscopy ; Metabolites ; Mosher's method ; Mycelia ; NMR spectroscopy ; Planar structures ; polyketides ; Ring structures ; Scaffolds ; Secondary metabolites ; Terpenes ; Terphenyls ; total synthesis ; Transesterification</subject><ispartof>Chemistry : a European journal, 2018-02, Vol.24 (9), p.2200-2213</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-c51adbae623a4580612bda8b3097af5d9a646bdf18f299b40890a1706651a8603</citedby><cites>FETCH-LOGICAL-c4768-c51adbae623a4580612bda8b3097af5d9a646bdf18f299b40890a1706651a8603</cites><orcidid>0000-0002-7284-8671 ; 0000-0002-0443-9091 ; 0000-0003-4858-3957 ; 0000-0003-0470-7428 ; 0000-0001-5234-8525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201704928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201704928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29168908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Surup, Frank</creatorcontrib><creatorcontrib>Kuhnert, Eric</creatorcontrib><creatorcontrib>Böhm, Andreas</creatorcontrib><creatorcontrib>Pendzialek, Tim</creatorcontrib><creatorcontrib>Solga, Danny</creatorcontrib><creatorcontrib>Wiebach, Vincent</creatorcontrib><creatorcontrib>Engler, Hauke</creatorcontrib><creatorcontrib>Berkessel, Albrecht</creatorcontrib><creatorcontrib>Stadler, Marc</creatorcontrib><creatorcontrib>Kalesse, Markus</creatorcontrib><title>The Rickiols: 20‐, 22‐, and 24‐membered Macrolides from the Ascomycete Hypoxylon rickii</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>In preceding studies the neotropical ascomycete Hypoxylon rickii turned out to be a prolific source of new secondary metabolites, considering that we had obtained terpenoids with five different scaffolds along with a series of terphenyls. From the mycelial extracts of a 70 L scale fermentation of this strain we additionally isolated nine new macrolides (1–9) by RP‐HPLC. The planar structures were elucidated by NMR spectroscopy complemented by HR‐ESIMS. The relative configurations were assigned by J‐based configuration analyses and confirmed by Kishi′s Universal Database. Subsequently, the absolute configurations were assigned by Mosher′s method using the shift analysis of a tetra‐MTPA derivative. For rickiol A (1) and E (5) we observed transesterification of 20‐membered ring structures to 22‐membered isomers rickiol A2 (6) and E2 (7), and to 24‐membered isomers rickiol A3 (8) and rickiol E3 (9), respectively. Cytotoxic effects and moderate antibiotic activity against Gram‐positive bacteria were observed for 1–8 and 1–6 and 8, respectively. The total synthesis of rickiol E3 (9) established easier access to these compounds.
Meet the Rickiols: If one solvent does not work for structure elucidation, then try another! To determine the stereo configuration of 20‐, 22‐, and 24‐membered macrolactones through J‐based analysis, the solvent had to be changed twice. Comprehensive analysis was confirmed with Kishi′s Universal Database, and finalized by Mosher′s method. The total synthesis of one representative confirmed the assignment.</description><subject>Antibiotics</subject><subject>Chemistry</subject><subject>Configurations</subject><subject>Cytotoxicity</subject><subject>Fermentation</subject><subject>Gram-positive bacteria</subject><subject>High-performance liquid chromatography</subject><subject>Isomers</subject><subject>Kishis′s Universal Database</subject><subject>Liquid chromatography</subject><subject>macrolide</subject><subject>Magnetic resonance spectroscopy</subject><subject>Metabolites</subject><subject>Mosher's method</subject><subject>Mycelia</subject><subject>NMR spectroscopy</subject><subject>Planar structures</subject><subject>polyketides</subject><subject>Ring structures</subject><subject>Scaffolds</subject><subject>Secondary metabolites</subject><subject>Terpenes</subject><subject>Terphenyls</subject><subject>total synthesis</subject><subject>Transesterification</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EoqWwMiJLLAyk2E7i2GxVVShSKyRURhQ5tqOmJHGxG0E2PoFv5EtwaSkSC9N7w7lH710ATjHqY4TIlZzrqk8QTlDECdsDXRwTHIQJjfdBF_EoCWgc8g44cm6BEOI0DA9Bh3BMGUesC55mcw0fCvlcmNJdQ4I-3z8uISHfQ9QKksivla4ybbWCUyGtKQulHcytqeDKpwdOmqqVeqXhuF2at7Y0NbRrZXEMDnJROn2ynT3weDOaDcfB5P72bjiYBDJKKAtkjIXKhKYkFFHMEMUkU4JlIeKJyGPFBY1opnLMcsJ5FiF_u_AvU-qDjKKwBy423qU1L412q7QqnNRlKWptGpdiThPPEUw9ev4HXZjG1v46T3EeY-xL81R_Q_l3nbM6T5e2qIRtU4zSdfHpuvh0V7wPnG21TVZptcN_mvYA3wCvRanbf3TpcDya_sq_AHiHjzM</recordid><startdate>20180209</startdate><enddate>20180209</enddate><creator>Surup, Frank</creator><creator>Kuhnert, Eric</creator><creator>Böhm, Andreas</creator><creator>Pendzialek, Tim</creator><creator>Solga, Danny</creator><creator>Wiebach, Vincent</creator><creator>Engler, Hauke</creator><creator>Berkessel, Albrecht</creator><creator>Stadler, Marc</creator><creator>Kalesse, Markus</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7284-8671</orcidid><orcidid>https://orcid.org/0000-0002-0443-9091</orcidid><orcidid>https://orcid.org/0000-0003-4858-3957</orcidid><orcidid>https://orcid.org/0000-0003-0470-7428</orcidid><orcidid>https://orcid.org/0000-0001-5234-8525</orcidid></search><sort><creationdate>20180209</creationdate><title>The Rickiols: 20‐, 22‐, and 24‐membered Macrolides from the Ascomycete Hypoxylon rickii</title><author>Surup, Frank ; Kuhnert, Eric ; Böhm, Andreas ; Pendzialek, Tim ; Solga, Danny ; Wiebach, Vincent ; Engler, Hauke ; Berkessel, Albrecht ; Stadler, Marc ; Kalesse, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-c51adbae623a4580612bda8b3097af5d9a646bdf18f299b40890a1706651a8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibiotics</topic><topic>Chemistry</topic><topic>Configurations</topic><topic>Cytotoxicity</topic><topic>Fermentation</topic><topic>Gram-positive bacteria</topic><topic>High-performance liquid chromatography</topic><topic>Isomers</topic><topic>Kishis′s Universal Database</topic><topic>Liquid chromatography</topic><topic>macrolide</topic><topic>Magnetic resonance spectroscopy</topic><topic>Metabolites</topic><topic>Mosher's method</topic><topic>Mycelia</topic><topic>NMR spectroscopy</topic><topic>Planar structures</topic><topic>polyketides</topic><topic>Ring structures</topic><topic>Scaffolds</topic><topic>Secondary metabolites</topic><topic>Terpenes</topic><topic>Terphenyls</topic><topic>total synthesis</topic><topic>Transesterification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surup, Frank</creatorcontrib><creatorcontrib>Kuhnert, Eric</creatorcontrib><creatorcontrib>Böhm, Andreas</creatorcontrib><creatorcontrib>Pendzialek, Tim</creatorcontrib><creatorcontrib>Solga, Danny</creatorcontrib><creatorcontrib>Wiebach, Vincent</creatorcontrib><creatorcontrib>Engler, Hauke</creatorcontrib><creatorcontrib>Berkessel, Albrecht</creatorcontrib><creatorcontrib>Stadler, Marc</creatorcontrib><creatorcontrib>Kalesse, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surup, Frank</au><au>Kuhnert, Eric</au><au>Böhm, Andreas</au><au>Pendzialek, Tim</au><au>Solga, Danny</au><au>Wiebach, Vincent</au><au>Engler, Hauke</au><au>Berkessel, Albrecht</au><au>Stadler, Marc</au><au>Kalesse, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rickiols: 20‐, 22‐, and 24‐membered Macrolides from the Ascomycete Hypoxylon rickii</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-02-09</date><risdate>2018</risdate><volume>24</volume><issue>9</issue><spage>2200</spage><epage>2213</epage><pages>2200-2213</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>In preceding studies the neotropical ascomycete Hypoxylon rickii turned out to be a prolific source of new secondary metabolites, considering that we had obtained terpenoids with five different scaffolds along with a series of terphenyls. From the mycelial extracts of a 70 L scale fermentation of this strain we additionally isolated nine new macrolides (1–9) by RP‐HPLC. The planar structures were elucidated by NMR spectroscopy complemented by HR‐ESIMS. The relative configurations were assigned by J‐based configuration analyses and confirmed by Kishi′s Universal Database. Subsequently, the absolute configurations were assigned by Mosher′s method using the shift analysis of a tetra‐MTPA derivative. For rickiol A (1) and E (5) we observed transesterification of 20‐membered ring structures to 22‐membered isomers rickiol A2 (6) and E2 (7), and to 24‐membered isomers rickiol A3 (8) and rickiol E3 (9), respectively. Cytotoxic effects and moderate antibiotic activity against Gram‐positive bacteria were observed for 1–8 and 1–6 and 8, respectively. The total synthesis of rickiol E3 (9) established easier access to these compounds.
Meet the Rickiols: If one solvent does not work for structure elucidation, then try another! To determine the stereo configuration of 20‐, 22‐, and 24‐membered macrolactones through J‐based analysis, the solvent had to be changed twice. Comprehensive analysis was confirmed with Kishi′s Universal Database, and finalized by Mosher′s method. The total synthesis of one representative confirmed the assignment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29168908</pmid><doi>10.1002/chem.201704928</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7284-8671</orcidid><orcidid>https://orcid.org/0000-0002-0443-9091</orcidid><orcidid>https://orcid.org/0000-0003-4858-3957</orcidid><orcidid>https://orcid.org/0000-0003-0470-7428</orcidid><orcidid>https://orcid.org/0000-0001-5234-8525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2018-02, Vol.24 (9), p.2200-2213 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1967860216 |
source | Access via Wiley Online Library |
subjects | Antibiotics Chemistry Configurations Cytotoxicity Fermentation Gram-positive bacteria High-performance liquid chromatography Isomers Kishis′s Universal Database Liquid chromatography macrolide Magnetic resonance spectroscopy Metabolites Mosher's method Mycelia NMR spectroscopy Planar structures polyketides Ring structures Scaffolds Secondary metabolites Terpenes Terphenyls total synthesis Transesterification |
title | The Rickiols: 20‐, 22‐, and 24‐membered Macrolides from the Ascomycete Hypoxylon rickii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rickiols:%2020%E2%80%90,%2022%E2%80%90,%20and%2024%E2%80%90membered%20Macrolides%20from%20the%20Ascomycete%20Hypoxylon%20rickii&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Surup,%20Frank&rft.date=2018-02-09&rft.volume=24&rft.issue=9&rft.spage=2200&rft.epage=2213&rft.pages=2200-2213&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201704928&rft_dat=%3Cproquest_cross%3E1967860216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999511947&rft_id=info:pmid/29168908&rfr_iscdi=true |