Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster
Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates a...
Gespeichert in:
Veröffentlicht in: | BioEssays 2005-04, Vol.27 (4), p.366-376 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 376 |
---|---|
container_issue | 4 |
container_start_page | 366 |
container_title | BioEssays |
container_volume | 27 |
creator | Sattelle, D.B. Jones, A.K. Sattelle, B.M. Matsuda, K. Reenan, R. Biggin, P.C. |
description | Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A‐to‐I pre‐mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dα6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three‐dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function. BioEssays 27:366–376, 2005. © 2005 Wiley periodicals, Inc. |
doi_str_mv | 10.1002/bies.20207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_19676996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19676996</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3207-265e41134a7e737c1793a588a589c3784333e497006f6414fc14e64270f1d4203</originalsourceid><addsrcrecordid>eNpFUMlOwzAQtRAIynLhA5BPnAh4ix0fWcoiEEjsN8t1J9SQxCFOBf17XMpymE3z3ujNQ2ibkn1KCDsYeYj7jDCiltCA5oxmtFDFMhoQJvNMM6HW0HqMr4QQLZlYRWs0V4rIQg3QaDj2_R520x7bZoxbG3vAvsH9BHDjXeh9ytg66GeVm4TKN4A7cND2ocMvkKbS1r6a4VDiky7E0E58ZXENlW3Cy_xat4lWSltF2PqpG-jhdHh_fJ5d3ZxdHB9eZZ4n6VnSCoJSLqwCxZWjSnObF0UK7bgqBOcchFaEyFIKKkpHBUjBFCnpWDDCN9Du4m7bhfcpxN7UPjqokhII02iolkpqLRNw5wc4HdUwNm3na9vNzK8rCUAXgA9fwex_T8zcbzP323z7bY4uhnffXeJkC45PP3_-cWz3ZmR6JzdP12fm8ZZfqmeqjeZfzQeAvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19676996</pqid></control><display><type>article</type><title>Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sattelle, D.B. ; Jones, A.K. ; Sattelle, B.M. ; Matsuda, K. ; Reenan, R. ; Biggin, P.C.</creator><creatorcontrib>Sattelle, D.B. ; Jones, A.K. ; Sattelle, B.M. ; Matsuda, K. ; Reenan, R. ; Biggin, P.C.</creatorcontrib><description>Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A‐to‐I pre‐mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dα6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three‐dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function. BioEssays 27:366–376, 2005. © 2005 Wiley periodicals, Inc.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.20207</identifier><identifier>PMID: 15770687</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alternative Splicing ; Amino Acid Sequence ; Animals ; Binding Sites ; Cholinergic Agents - chemistry ; Cholinergic Agents - metabolism ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Humans ; Imidazoles - chemistry ; Imidazoles - metabolism ; Insecticides - chemistry ; Insecticides - metabolism ; Models, Molecular ; Molecular Sequence Data ; Multigene Family ; Neonicotinoids ; Nitro Compounds ; Protein Conformation ; Protein Isoforms - chemistry ; Protein Isoforms - classification ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein Subunits - chemistry ; Protein Subunits - classification ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Receptors, Nicotinic - chemistry ; Receptors, Nicotinic - classification ; Receptors, Nicotinic - genetics ; Receptors, Nicotinic - metabolism ; RNA Editing ; RNA Processing, Post-Transcriptional ; Sequence Alignment</subject><ispartof>BioEssays, 2005-04, Vol.27 (4), p.366-376</ispartof><rights>Copyright © 2005 Wiley Periodical, Inc.</rights><rights>Copyright 2005 Wiley periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.20207$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.20207$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15770687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sattelle, D.B.</creatorcontrib><creatorcontrib>Jones, A.K.</creatorcontrib><creatorcontrib>Sattelle, B.M.</creatorcontrib><creatorcontrib>Matsuda, K.</creatorcontrib><creatorcontrib>Reenan, R.</creatorcontrib><creatorcontrib>Biggin, P.C.</creatorcontrib><title>Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster</title><title>BioEssays</title><addtitle>Bioessays</addtitle><description>Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A‐to‐I pre‐mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dα6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three‐dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function. BioEssays 27:366–376, 2005. © 2005 Wiley periodicals, Inc.</description><subject>Alternative Splicing</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cholinergic Agents - chemistry</subject><subject>Cholinergic Agents - metabolism</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Humans</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - metabolism</subject><subject>Insecticides - chemistry</subject><subject>Insecticides - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Neonicotinoids</subject><subject>Nitro Compounds</subject><subject>Protein Conformation</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - classification</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - classification</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Receptors, Nicotinic - chemistry</subject><subject>Receptors, Nicotinic - classification</subject><subject>Receptors, Nicotinic - genetics</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>RNA Editing</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>Sequence Alignment</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUMlOwzAQtRAIynLhA5BPnAh4ix0fWcoiEEjsN8t1J9SQxCFOBf17XMpymE3z3ujNQ2ibkn1KCDsYeYj7jDCiltCA5oxmtFDFMhoQJvNMM6HW0HqMr4QQLZlYRWs0V4rIQg3QaDj2_R520x7bZoxbG3vAvsH9BHDjXeh9ytg66GeVm4TKN4A7cND2ocMvkKbS1r6a4VDiky7E0E58ZXENlW3Cy_xat4lWSltF2PqpG-jhdHh_fJ5d3ZxdHB9eZZ4n6VnSCoJSLqwCxZWjSnObF0UK7bgqBOcchFaEyFIKKkpHBUjBFCnpWDDCN9Du4m7bhfcpxN7UPjqokhII02iolkpqLRNw5wc4HdUwNm3na9vNzK8rCUAXgA9fwex_T8zcbzP323z7bY4uhnffXeJkC45PP3_-cWz3ZmR6JzdP12fm8ZZfqmeqjeZfzQeAvw</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Sattelle, D.B.</creator><creator>Jones, A.K.</creator><creator>Sattelle, B.M.</creator><creator>Matsuda, K.</creator><creator>Reenan, R.</creator><creator>Biggin, P.C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200504</creationdate><title>Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster</title><author>Sattelle, D.B. ; Jones, A.K. ; Sattelle, B.M. ; Matsuda, K. ; Reenan, R. ; Biggin, P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3207-265e41134a7e737c1793a588a589c3784333e497006f6414fc14e64270f1d4203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alternative Splicing</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cholinergic Agents - chemistry</topic><topic>Cholinergic Agents - metabolism</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Humans</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - metabolism</topic><topic>Insecticides - chemistry</topic><topic>Insecticides - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Neonicotinoids</topic><topic>Nitro Compounds</topic><topic>Protein Conformation</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - classification</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - classification</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Receptors, Nicotinic - chemistry</topic><topic>Receptors, Nicotinic - classification</topic><topic>Receptors, Nicotinic - genetics</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>RNA Editing</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattelle, D.B.</creatorcontrib><creatorcontrib>Jones, A.K.</creatorcontrib><creatorcontrib>Sattelle, B.M.</creatorcontrib><creatorcontrib>Matsuda, K.</creatorcontrib><creatorcontrib>Reenan, R.</creatorcontrib><creatorcontrib>Biggin, P.C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattelle, D.B.</au><au>Jones, A.K.</au><au>Sattelle, B.M.</au><au>Matsuda, K.</au><au>Reenan, R.</au><au>Biggin, P.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster</atitle><jtitle>BioEssays</jtitle><addtitle>Bioessays</addtitle><date>2005-04</date><risdate>2005</risdate><volume>27</volume><issue>4</issue><spage>366</spage><epage>376</epage><pages>366-376</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><abstract>Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A‐to‐I pre‐mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dα6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three‐dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function. BioEssays 27:366–376, 2005. © 2005 Wiley periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15770687</pmid><doi>10.1002/bies.20207</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-9247 |
ispartof | BioEssays, 2005-04, Vol.27 (4), p.366-376 |
issn | 0265-9247 1521-1878 |
language | eng |
recordid | cdi_proquest_miscellaneous_19676996 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alternative Splicing Amino Acid Sequence Animals Binding Sites Cholinergic Agents - chemistry Cholinergic Agents - metabolism Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Humans Imidazoles - chemistry Imidazoles - metabolism Insecticides - chemistry Insecticides - metabolism Models, Molecular Molecular Sequence Data Multigene Family Neonicotinoids Nitro Compounds Protein Conformation Protein Isoforms - chemistry Protein Isoforms - classification Protein Isoforms - genetics Protein Isoforms - metabolism Protein Subunits - chemistry Protein Subunits - classification Protein Subunits - genetics Protein Subunits - metabolism Receptors, Nicotinic - chemistry Receptors, Nicotinic - classification Receptors, Nicotinic - genetics Receptors, Nicotinic - metabolism RNA Editing RNA Processing, Post-Transcriptional Sequence Alignment |
title | Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edit,%20cut%20and%20paste%20in%20the%20nicotinic%20acetylcholine%20receptor%20gene%20family%20of%20Drosophila%20melanogaster&rft.jtitle=BioEssays&rft.au=Sattelle,%20D.B.&rft.date=2005-04&rft.volume=27&rft.issue=4&rft.spage=366&rft.epage=376&rft.pages=366-376&rft.issn=0265-9247&rft.eissn=1521-1878&rft_id=info:doi/10.1002/bies.20207&rft_dat=%3Cproquest_pubme%3E19676996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19676996&rft_id=info:pmid/15770687&rfr_iscdi=true |