Effect of neonatal orally administered S-allyl cysteine in high-fructose diet fed Wistar rats

S-allyl cysteine (SAC) has antioxidant, antidiabetic and antiobesity properties. We hypothesized that neonatal oral administration of SAC would protect rats against neonatal and adulthood high-fructose diet-induced adverse metabolic outcomes in adulthood. In total, 112 (males=56; females=56), 4-day-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of developmental origins of health and disease 2018-04, Vol.9 (2), p.160-171
Hauptverfasser: Lembede, B W, Erlwanger, K H, Nkomozepi, P, Chivandi, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:S-allyl cysteine (SAC) has antioxidant, antidiabetic and antiobesity properties. We hypothesized that neonatal oral administration of SAC would protect rats against neonatal and adulthood high-fructose diet-induced adverse metabolic outcomes in adulthood. In total, 112 (males=56; females=56), 4-day-old Wistar rat pups were randomly allocated to groups and administered the following treatment regimens daily for 15 days from postnatal day (PND) 6-20: group I - 10 ml/kg distilled water, group II - 10 ml/kg 20% fructose solution (FS), group III - 150 mg/kg SAC and group IV - SAC+FS. On PND 21, the pups were weaned and allowed to grow on a standard rat chow (SRC) until PND 56. The rats from each treatment regimen were then randomly split into two subgroups: one on a SRC and plain drinking water and another on SRC and 20% FS as drinking fluid and then subjected to these treatment regimens for 8 weeks after which they were euthanized and tissues collected for analyzes. Neonatal oral administration of SAC attenuated the neonatal high-fructose diet-induced programming for hepatic lipid accretion in adulthood but not against adulthood high-fructose diet-induced visceral obesity. Neonatal oral administration of SAC programmes for protection against neonatal fructose-induced programming for hepatic lipid accumulation thus could potentially protect against fat-mediated liver derangements in adult life.
ISSN:2040-1744
2040-1752
DOI:10.1017/S2040174417000940