Paternal Exposure to Environmental Chemical Stress Affects Male Offspring’s Hepatic Mitochondria
Abstract Preconceptional paternal exposures may affect offspring’s health, which cannot be explained by mutations in germ cells, but by persistent changes in the regulation of gene expression. Therefore, we investigated whether pre-conceptional paternal exposure to benzo[a]pyrene (B[a]P) could alter...
Gespeichert in:
Veröffentlicht in: | Toxicological sciences 2018-03, Vol.162 (1), p.241-250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 1 |
container_start_page | 241 |
container_title | Toxicological sciences |
container_volume | 162 |
creator | Godschalk, Roger Remels, Alex Hoogendoorn, Camiel van Benthem, Jan Luijten, Mirjam Duale, Nur Brunborg, Gunnar Olsen, Ann-Karin Bouwman, Freek G Munnia, Armelle Peluso, Marco Mariman, Edwin van Schooten, Frederik Jan |
description | Abstract
Preconceptional paternal exposures may affect offspring’s health, which cannot be explained by mutations in germ cells, but by persistent changes in the regulation of gene expression. Therefore, we investigated whether pre-conceptional paternal exposure to benzo[a]pyrene (B[a]P) could alter the offspring’s phenotype. Male C57BL/6 mice were exposed to B[a]P by gavage for 6 weeks, 3× per week, and were crossed with unexposed BALB-c females 6 weeks after the final exposure. The offspring was kept under normal feeding conditions and was sacrificed at 3 weeks of age. Analysis of the liver proteome by 2D-gel electrophoresis and mass spectrometry indicated that proteins involved in mitochondrial function were significantly downregulated in the offspring of exposed fathers. This down-regulation of mitochondrial proteins was paralleled by a reduction in mitochondrial DNA copy number and reduced activity of citrate synthase and β-hydroxyacyl-CoA dehydrogenase, but in male offspring only. Surprisingly, analysis of hepatic mRNA expression revealed a male-specific up-regulation of the genes, whose proteins were downregulated, including Aldh2 and Ogg1. This discrepancy could be related to several selected microRNA (miRNA)’s that regulate the translation of these proteins; miRNA-122, miRNA-129-2-5p, and miRNA-1941 were upregulated in a gender-specific manner. Since mitochondria are thought to be a source of intracellular reactive oxygen species, we additionally assessed oxidatively-induced DNA damage. Both 8-hydroxy-deoxyguanosine and malondialdehyde-dG adduct levels were significantly reduced in male offspring of exposed fathers. In conclusion, we show that paternal exposure to B[a]P can regulate mitochondrial metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers. |
doi_str_mv | 10.1093/toxsci/kfx246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1966234305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/toxsci/kfx246</oup_id><sourcerecordid>1966234305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-52e0d3ab3a30dc9542eb2b372d356418c192fb8490a33702a9146f1153d868913</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EolAYWZFHllD_xG48VlWhSK2KBMyR49jUkMTBdlDZeA1ejychqAVGpnt079G5Oh8AZxhdYiToKLpNUHb0bDYk5XvgqF_yBAki9neaowwNwHEITwhhzJE4BAMicMo4Y0eguJVR-0ZWcLZpXei8htHBWfNqvWtq3cT-Ml3r2qpe3EWvQ4ATY7SKAS5lpeHKmNB62zx-vn8EONetjFbBpY1OrV1TeitPwIGRVdCnuzkED1ez--k8Wayub6aTRaIoZzFhRKOSyoJKikolWEp0QQo6JiVlPMWZwoKYIksFkpSOEZF9B24wZrTMeCYwHYKLbW7r3UunQ8xrG5SuKtlo14UcC84JTSlivTXZWpV3IXht8r5CLf1bjlH-jTXfYs23WHv_-S66K2pd_rp_OP79dl37T9YXKP6Ebg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966234305</pqid></control><display><type>article</type><title>Paternal Exposure to Environmental Chemical Stress Affects Male Offspring’s Hepatic Mitochondria</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Godschalk, Roger ; Remels, Alex ; Hoogendoorn, Camiel ; van Benthem, Jan ; Luijten, Mirjam ; Duale, Nur ; Brunborg, Gunnar ; Olsen, Ann-Karin ; Bouwman, Freek G ; Munnia, Armelle ; Peluso, Marco ; Mariman, Edwin ; van Schooten, Frederik Jan</creator><creatorcontrib>Godschalk, Roger ; Remels, Alex ; Hoogendoorn, Camiel ; van Benthem, Jan ; Luijten, Mirjam ; Duale, Nur ; Brunborg, Gunnar ; Olsen, Ann-Karin ; Bouwman, Freek G ; Munnia, Armelle ; Peluso, Marco ; Mariman, Edwin ; van Schooten, Frederik Jan</creatorcontrib><description>Abstract
Preconceptional paternal exposures may affect offspring’s health, which cannot be explained by mutations in germ cells, but by persistent changes in the regulation of gene expression. Therefore, we investigated whether pre-conceptional paternal exposure to benzo[a]pyrene (B[a]P) could alter the offspring’s phenotype. Male C57BL/6 mice were exposed to B[a]P by gavage for 6 weeks, 3× per week, and were crossed with unexposed BALB-c females 6 weeks after the final exposure. The offspring was kept under normal feeding conditions and was sacrificed at 3 weeks of age. Analysis of the liver proteome by 2D-gel electrophoresis and mass spectrometry indicated that proteins involved in mitochondrial function were significantly downregulated in the offspring of exposed fathers. This down-regulation of mitochondrial proteins was paralleled by a reduction in mitochondrial DNA copy number and reduced activity of citrate synthase and β-hydroxyacyl-CoA dehydrogenase, but in male offspring only. Surprisingly, analysis of hepatic mRNA expression revealed a male-specific up-regulation of the genes, whose proteins were downregulated, including Aldh2 and Ogg1. This discrepancy could be related to several selected microRNA (miRNA)’s that regulate the translation of these proteins; miRNA-122, miRNA-129-2-5p, and miRNA-1941 were upregulated in a gender-specific manner. Since mitochondria are thought to be a source of intracellular reactive oxygen species, we additionally assessed oxidatively-induced DNA damage. Both 8-hydroxy-deoxyguanosine and malondialdehyde-dG adduct levels were significantly reduced in male offspring of exposed fathers. In conclusion, we show that paternal exposure to B[a]P can regulate mitochondrial metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers.</description><identifier>ISSN: 1096-6080</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfx246</identifier><identifier>PMID: 29145655</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><ispartof>Toxicological sciences, 2018-03, Vol.162 (1), p.241-250</ispartof><rights>The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-52e0d3ab3a30dc9542eb2b372d356418c192fb8490a33702a9146f1153d868913</citedby><cites>FETCH-LOGICAL-c365t-52e0d3ab3a30dc9542eb2b372d356418c192fb8490a33702a9146f1153d868913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29145655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Godschalk, Roger</creatorcontrib><creatorcontrib>Remels, Alex</creatorcontrib><creatorcontrib>Hoogendoorn, Camiel</creatorcontrib><creatorcontrib>van Benthem, Jan</creatorcontrib><creatorcontrib>Luijten, Mirjam</creatorcontrib><creatorcontrib>Duale, Nur</creatorcontrib><creatorcontrib>Brunborg, Gunnar</creatorcontrib><creatorcontrib>Olsen, Ann-Karin</creatorcontrib><creatorcontrib>Bouwman, Freek G</creatorcontrib><creatorcontrib>Munnia, Armelle</creatorcontrib><creatorcontrib>Peluso, Marco</creatorcontrib><creatorcontrib>Mariman, Edwin</creatorcontrib><creatorcontrib>van Schooten, Frederik Jan</creatorcontrib><title>Paternal Exposure to Environmental Chemical Stress Affects Male Offspring’s Hepatic Mitochondria</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>Abstract
Preconceptional paternal exposures may affect offspring’s health, which cannot be explained by mutations in germ cells, but by persistent changes in the regulation of gene expression. Therefore, we investigated whether pre-conceptional paternal exposure to benzo[a]pyrene (B[a]P) could alter the offspring’s phenotype. Male C57BL/6 mice were exposed to B[a]P by gavage for 6 weeks, 3× per week, and were crossed with unexposed BALB-c females 6 weeks after the final exposure. The offspring was kept under normal feeding conditions and was sacrificed at 3 weeks of age. Analysis of the liver proteome by 2D-gel electrophoresis and mass spectrometry indicated that proteins involved in mitochondrial function were significantly downregulated in the offspring of exposed fathers. This down-regulation of mitochondrial proteins was paralleled by a reduction in mitochondrial DNA copy number and reduced activity of citrate synthase and β-hydroxyacyl-CoA dehydrogenase, but in male offspring only. Surprisingly, analysis of hepatic mRNA expression revealed a male-specific up-regulation of the genes, whose proteins were downregulated, including Aldh2 and Ogg1. This discrepancy could be related to several selected microRNA (miRNA)’s that regulate the translation of these proteins; miRNA-122, miRNA-129-2-5p, and miRNA-1941 were upregulated in a gender-specific manner. Since mitochondria are thought to be a source of intracellular reactive oxygen species, we additionally assessed oxidatively-induced DNA damage. Both 8-hydroxy-deoxyguanosine and malondialdehyde-dG adduct levels were significantly reduced in male offspring of exposed fathers. In conclusion, we show that paternal exposure to B[a]P can regulate mitochondrial metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers.</description><issn>1096-6080</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EolAYWZFHllD_xG48VlWhSK2KBMyR49jUkMTBdlDZeA1ejychqAVGpnt079G5Oh8AZxhdYiToKLpNUHb0bDYk5XvgqF_yBAki9neaowwNwHEITwhhzJE4BAMicMo4Y0eguJVR-0ZWcLZpXei8htHBWfNqvWtq3cT-Ml3r2qpe3EWvQ4ATY7SKAS5lpeHKmNB62zx-vn8EONetjFbBpY1OrV1TeitPwIGRVdCnuzkED1ez--k8Wayub6aTRaIoZzFhRKOSyoJKikolWEp0QQo6JiVlPMWZwoKYIksFkpSOEZF9B24wZrTMeCYwHYKLbW7r3UunQ8xrG5SuKtlo14UcC84JTSlivTXZWpV3IXht8r5CLf1bjlH-jTXfYs23WHv_-S66K2pd_rp_OP79dl37T9YXKP6Ebg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Godschalk, Roger</creator><creator>Remels, Alex</creator><creator>Hoogendoorn, Camiel</creator><creator>van Benthem, Jan</creator><creator>Luijten, Mirjam</creator><creator>Duale, Nur</creator><creator>Brunborg, Gunnar</creator><creator>Olsen, Ann-Karin</creator><creator>Bouwman, Freek G</creator><creator>Munnia, Armelle</creator><creator>Peluso, Marco</creator><creator>Mariman, Edwin</creator><creator>van Schooten, Frederik Jan</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>Paternal Exposure to Environmental Chemical Stress Affects Male Offspring’s Hepatic Mitochondria</title><author>Godschalk, Roger ; Remels, Alex ; Hoogendoorn, Camiel ; van Benthem, Jan ; Luijten, Mirjam ; Duale, Nur ; Brunborg, Gunnar ; Olsen, Ann-Karin ; Bouwman, Freek G ; Munnia, Armelle ; Peluso, Marco ; Mariman, Edwin ; van Schooten, Frederik Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-52e0d3ab3a30dc9542eb2b372d356418c192fb8490a33702a9146f1153d868913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godschalk, Roger</creatorcontrib><creatorcontrib>Remels, Alex</creatorcontrib><creatorcontrib>Hoogendoorn, Camiel</creatorcontrib><creatorcontrib>van Benthem, Jan</creatorcontrib><creatorcontrib>Luijten, Mirjam</creatorcontrib><creatorcontrib>Duale, Nur</creatorcontrib><creatorcontrib>Brunborg, Gunnar</creatorcontrib><creatorcontrib>Olsen, Ann-Karin</creatorcontrib><creatorcontrib>Bouwman, Freek G</creatorcontrib><creatorcontrib>Munnia, Armelle</creatorcontrib><creatorcontrib>Peluso, Marco</creatorcontrib><creatorcontrib>Mariman, Edwin</creatorcontrib><creatorcontrib>van Schooten, Frederik Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godschalk, Roger</au><au>Remels, Alex</au><au>Hoogendoorn, Camiel</au><au>van Benthem, Jan</au><au>Luijten, Mirjam</au><au>Duale, Nur</au><au>Brunborg, Gunnar</au><au>Olsen, Ann-Karin</au><au>Bouwman, Freek G</au><au>Munnia, Armelle</au><au>Peluso, Marco</au><au>Mariman, Edwin</au><au>van Schooten, Frederik Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paternal Exposure to Environmental Chemical Stress Affects Male Offspring’s Hepatic Mitochondria</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>162</volume><issue>1</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>1096-6080</issn><eissn>1096-0929</eissn><abstract>Abstract
Preconceptional paternal exposures may affect offspring’s health, which cannot be explained by mutations in germ cells, but by persistent changes in the regulation of gene expression. Therefore, we investigated whether pre-conceptional paternal exposure to benzo[a]pyrene (B[a]P) could alter the offspring’s phenotype. Male C57BL/6 mice were exposed to B[a]P by gavage for 6 weeks, 3× per week, and were crossed with unexposed BALB-c females 6 weeks after the final exposure. The offspring was kept under normal feeding conditions and was sacrificed at 3 weeks of age. Analysis of the liver proteome by 2D-gel electrophoresis and mass spectrometry indicated that proteins involved in mitochondrial function were significantly downregulated in the offspring of exposed fathers. This down-regulation of mitochondrial proteins was paralleled by a reduction in mitochondrial DNA copy number and reduced activity of citrate synthase and β-hydroxyacyl-CoA dehydrogenase, but in male offspring only. Surprisingly, analysis of hepatic mRNA expression revealed a male-specific up-regulation of the genes, whose proteins were downregulated, including Aldh2 and Ogg1. This discrepancy could be related to several selected microRNA (miRNA)’s that regulate the translation of these proteins; miRNA-122, miRNA-129-2-5p, and miRNA-1941 were upregulated in a gender-specific manner. Since mitochondria are thought to be a source of intracellular reactive oxygen species, we additionally assessed oxidatively-induced DNA damage. Both 8-hydroxy-deoxyguanosine and malondialdehyde-dG adduct levels were significantly reduced in male offspring of exposed fathers. In conclusion, we show that paternal exposure to B[a]P can regulate mitochondrial metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>29145655</pmid><doi>10.1093/toxsci/kfx246</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-6080 |
ispartof | Toxicological sciences, 2018-03, Vol.162 (1), p.241-250 |
issn | 1096-6080 1096-0929 |
language | eng |
recordid | cdi_proquest_miscellaneous_1966234305 |
source | Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | Paternal Exposure to Environmental Chemical Stress Affects Male Offspring’s Hepatic Mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paternal%20Exposure%20to%20Environmental%20Chemical%20Stress%20Affects%20Male%20Offspring%E2%80%99s%20Hepatic%20Mitochondria&rft.jtitle=Toxicological%20sciences&rft.au=Godschalk,%20Roger&rft.date=2018-03-01&rft.volume=162&rft.issue=1&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfx246&rft_dat=%3Cproquest_cross%3E1966234305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966234305&rft_id=info:pmid/29145655&rft_oup_id=10.1093/toxsci/kfx246&rfr_iscdi=true |