Continuum mathematical modeling of slip weakening in geological systems

We describe a framework for mathematical modeling of slip weakening in an initially intact rock mass due to shear strain localization along any arbitrary slip plane. The modeling technique considered is based on continuum mechanics and may be cast directly into a standard nonlinear finite element al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2007-04, Vol.112 (B4), p.n/a
Hauptverfasser: Borja, Ronaldo I., Foster, Craig D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B4
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 112
creator Borja, Ronaldo I.
Foster, Craig D.
description We describe a framework for mathematical modeling of slip weakening in an initially intact rock mass due to shear strain localization along any arbitrary slip plane. The modeling technique considered is based on continuum mechanics and may be cast directly into a standard nonlinear finite element algorithm for the analysis of prefailure and postfailure responses of geological systems in a boundary value problem. The prefailure behavior is represented by a continuum constitutive model; the postfailure behavior is characterized by frictional yielding on a slip surface with state‐ and velocity‐dependent coefficient of friction. In the context of finite element analysis, slip planes are represented by an embedded strong discontinuity introduced into an initially intact finite element to signal the beginning of postfailure behavior. This paper focuses on the narrow time interval of slip weakening, from the moment the strong discontinuity has been embedded into a finite element until the relative slip has grown to a large enough value for the coefficient of friction to reach steady state. To this end, we formulate a linear slip weakening constitutive law in which the weakening component decays to zero at the same time that the frictional component increases to its value at residual state.
doi_str_mv 10.1029/2005JB004056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19655331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19655331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4011-3affe23e3d6ddd53c9190bb1797f98cbdf455a2f1fea26ee4e5b9ccd23bbd4783</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElVhxwdkAysCfsbJklYQqCqQEAh2lpOMi2keJU5U-ve4pAJWzGJGss6947kInRB8QTBNLinGYjbBmGMR7aERJSIKKcV0H40w4XGIKZWH6Ni5d-yLi4hjMkLptKk7W_d9FVS6ewPfbK7LoGoKKG29CBoTuNKugjXoJdTbF1sHC2jKZvENuo3roHJH6MDo0sHxbo7R88310_Q2nD-kd9Oreaj9OhIybQxQBqyIiqIQLE9IgrOMyESaJM6zwnAhNDXEgKYRAAeRJXleUJZlBZcxG6OzwXfVNh89uE5V1uVQlrqGpneKJJEQjBEPng9g3jbOtWDUqrWVbjeKYLUNTP0NzOOnO1_t_Fmm1XVu3a8mlknEIuk5NnBrW8LmX081Sx8nhEu6_Uw4qKwP6_NHpdul8p5SqJf7VAnBZTohUr2yL2-9iPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19655331</pqid></control><display><type>article</type><title>Continuum mathematical modeling of slip weakening in geological systems</title><source>Wiley Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Borja, Ronaldo I. ; Foster, Craig D.</creator><creatorcontrib>Borja, Ronaldo I. ; Foster, Craig D.</creatorcontrib><description>We describe a framework for mathematical modeling of slip weakening in an initially intact rock mass due to shear strain localization along any arbitrary slip plane. The modeling technique considered is based on continuum mechanics and may be cast directly into a standard nonlinear finite element algorithm for the analysis of prefailure and postfailure responses of geological systems in a boundary value problem. The prefailure behavior is represented by a continuum constitutive model; the postfailure behavior is characterized by frictional yielding on a slip surface with state‐ and velocity‐dependent coefficient of friction. In the context of finite element analysis, slip planes are represented by an embedded strong discontinuity introduced into an initially intact finite element to signal the beginning of postfailure behavior. This paper focuses on the narrow time interval of slip weakening, from the moment the strong discontinuity has been embedded into a finite element until the relative slip has grown to a large enough value for the coefficient of friction to reach steady state. To this end, we formulate a linear slip weakening constitutive law in which the weakening component decays to zero at the same time that the frictional component increases to its value at residual state.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JB004056</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; faulting ; friction ; slip weakening</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2007-04, Vol.112 (B4), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4011-3affe23e3d6ddd53c9190bb1797f98cbdf455a2f1fea26ee4e5b9ccd23bbd4783</citedby><cites>FETCH-LOGICAL-a4011-3affe23e3d6ddd53c9190bb1797f98cbdf455a2f1fea26ee4e5b9ccd23bbd4783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JB004056$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JB004056$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18796367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><creatorcontrib>Foster, Craig D.</creatorcontrib><title>Continuum mathematical modeling of slip weakening in geological systems</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We describe a framework for mathematical modeling of slip weakening in an initially intact rock mass due to shear strain localization along any arbitrary slip plane. The modeling technique considered is based on continuum mechanics and may be cast directly into a standard nonlinear finite element algorithm for the analysis of prefailure and postfailure responses of geological systems in a boundary value problem. The prefailure behavior is represented by a continuum constitutive model; the postfailure behavior is characterized by frictional yielding on a slip surface with state‐ and velocity‐dependent coefficient of friction. In the context of finite element analysis, slip planes are represented by an embedded strong discontinuity introduced into an initially intact finite element to signal the beginning of postfailure behavior. This paper focuses on the narrow time interval of slip weakening, from the moment the strong discontinuity has been embedded into a finite element until the relative slip has grown to a large enough value for the coefficient of friction to reach steady state. To this end, we formulate a linear slip weakening constitutive law in which the weakening component decays to zero at the same time that the frictional component increases to its value at residual state.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>faulting</subject><subject>friction</subject><subject>slip weakening</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElVhxwdkAysCfsbJklYQqCqQEAh2lpOMi2keJU5U-ve4pAJWzGJGss6947kInRB8QTBNLinGYjbBmGMR7aERJSIKKcV0H40w4XGIKZWH6Ni5d-yLi4hjMkLptKk7W_d9FVS6ewPfbK7LoGoKKG29CBoTuNKugjXoJdTbF1sHC2jKZvENuo3roHJH6MDo0sHxbo7R88310_Q2nD-kd9Oreaj9OhIybQxQBqyIiqIQLE9IgrOMyESaJM6zwnAhNDXEgKYRAAeRJXleUJZlBZcxG6OzwXfVNh89uE5V1uVQlrqGpneKJJEQjBEPng9g3jbOtWDUqrWVbjeKYLUNTP0NzOOnO1_t_Fmm1XVu3a8mlknEIuk5NnBrW8LmX081Sx8nhEu6_Uw4qKwP6_NHpdul8p5SqJf7VAnBZTohUr2yL2-9iPA</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Borja, Ronaldo I.</creator><creator>Foster, Craig D.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200704</creationdate><title>Continuum mathematical modeling of slip weakening in geological systems</title><author>Borja, Ronaldo I. ; Foster, Craig D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4011-3affe23e3d6ddd53c9190bb1797f98cbdf455a2f1fea26ee4e5b9ccd23bbd4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>faulting</topic><topic>friction</topic><topic>slip weakening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><creatorcontrib>Foster, Craig D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borja, Ronaldo I.</au><au>Foster, Craig D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuum mathematical modeling of slip weakening in geological systems</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-04</date><risdate>2007</risdate><volume>112</volume><issue>B4</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We describe a framework for mathematical modeling of slip weakening in an initially intact rock mass due to shear strain localization along any arbitrary slip plane. The modeling technique considered is based on continuum mechanics and may be cast directly into a standard nonlinear finite element algorithm for the analysis of prefailure and postfailure responses of geological systems in a boundary value problem. The prefailure behavior is represented by a continuum constitutive model; the postfailure behavior is characterized by frictional yielding on a slip surface with state‐ and velocity‐dependent coefficient of friction. In the context of finite element analysis, slip planes are represented by an embedded strong discontinuity introduced into an initially intact finite element to signal the beginning of postfailure behavior. This paper focuses on the narrow time interval of slip weakening, from the moment the strong discontinuity has been embedded into a finite element until the relative slip has grown to a large enough value for the coefficient of friction to reach steady state. To this end, we formulate a linear slip weakening constitutive law in which the weakening component decays to zero at the same time that the frictional component increases to its value at residual state.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JB004056</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2007-04, Vol.112 (B4), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_19655331
source Wiley Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
faulting
friction
slip weakening
title Continuum mathematical modeling of slip weakening in geological systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuum%20mathematical%20modeling%20of%20slip%20weakening%20in%20geological%20systems&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Borja,%20Ronaldo%20I.&rft.date=2007-04&rft.volume=112&rft.issue=B4&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JB004056&rft_dat=%3Cproquest_cross%3E19655331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19655331&rft_id=info:pmid/&rfr_iscdi=true