Two‐stage model for multivariate longitudinal and survival data with application to nephrology research

In many follow‐up studies different types of outcomes are collected including longitudinal measurements and time‐to‐event outcomes. Commonly, it is of interest to study the association between them. Joint modeling approaches of a single longitudinal outcome and survival process have recently gained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2017-11, Vol.59 (6), p.1204-1220
Hauptverfasser: Guler, Ipek, Faes, Christel, Cadarso‐Suárez, Carmen, Teixeira, Laetitia, Rodrigues, Anabela, Mendonça, Denisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1220
container_issue 6
container_start_page 1204
container_title Biometrical journal
container_volume 59
creator Guler, Ipek
Faes, Christel
Cadarso‐Suárez, Carmen
Teixeira, Laetitia
Rodrigues, Anabela
Mendonça, Denisa
description In many follow‐up studies different types of outcomes are collected including longitudinal measurements and time‐to‐event outcomes. Commonly, it is of interest to study the association between them. Joint modeling approaches of a single longitudinal outcome and survival process have recently gained increasing attention from both frequentist and Bayesian perspective. However, in many studies several longitudinal biomarkers are of interest and instead of selecting one single biomarker, the relationships between all these outcomes and their association with survival needs to be investigated. Our motivating study comes from Peritoneal Dialysis Programme in Nephrology research from Nephrology Unit, CHP (Hospital de Santo António), Porto, Portugal in which the interest relies on the possible association between various biomarkers (calcium, phosphate, parathormone, and creatinine) and the patients' survival. To this aim, we propose a two‐stage model‐based approach for multivariate longitudinal and survival data that allowed us to study such complex association structure. The multivariate model suggested in this paper provided new insights in the area of nephrology research showing valid results in comparison with those models studying each longitudinal biomarker with survival separately.
doi_str_mv 10.1002/bimj.201600244
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1964708343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963865931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4350-397a8f5b7108294f6a9053601b5288771a5eea1401c9f468fbb56c18f1964c5b3</originalsourceid><addsrcrecordid>eNqF0c1u1DAUBWALgehQ2LJEltiwyXAd_8ReQtVCURGbso5uEmfGIycOttPR7HiEPiNPQoYpXbBhZV3585GuDyGvGawZQPm-ccNuXQJTyyDEE7JismSFAK6ekhXwkhdci-qMvEhpBwAGRPmcnJWGcaNArYi73YdfP-9Txo2lQ-isp32IdJh9dncYHWZLfRg3Ls-dG9FTHDua5ni33HraYUa6d3lLcZq8azG7MNIc6GinbQw-bA402mQxttuX5FmPPtlXD-c5-X51eXvxubj59un64sNN0QouoeCmQt3LpmKgSyN6hQYkV8AaWWpdVQyltcgEsNb0Qum-aaRqme6ZUaKVDT8n7065Uww_ZptyPbjUWu9xtGFO9dFVoLngC337D92FOS5b_lFcK2k4W9T6pNoYUoq2r6foBoyHmkF9LKE-llA_lrA8ePMQOzeD7R75319fgDiBvfP28J-4-uP11y9Mc-C_AXnek5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963865931</pqid></control><display><type>article</type><title>Two‐stage model for multivariate longitudinal and survival data with application to nephrology research</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Guler, Ipek ; Faes, Christel ; Cadarso‐Suárez, Carmen ; Teixeira, Laetitia ; Rodrigues, Anabela ; Mendonça, Denisa</creator><creatorcontrib>Guler, Ipek ; Faes, Christel ; Cadarso‐Suárez, Carmen ; Teixeira, Laetitia ; Rodrigues, Anabela ; Mendonça, Denisa</creatorcontrib><description>In many follow‐up studies different types of outcomes are collected including longitudinal measurements and time‐to‐event outcomes. Commonly, it is of interest to study the association between them. Joint modeling approaches of a single longitudinal outcome and survival process have recently gained increasing attention from both frequentist and Bayesian perspective. However, in many studies several longitudinal biomarkers are of interest and instead of selecting one single biomarker, the relationships between all these outcomes and their association with survival needs to be investigated. Our motivating study comes from Peritoneal Dialysis Programme in Nephrology research from Nephrology Unit, CHP (Hospital de Santo António), Porto, Portugal in which the interest relies on the possible association between various biomarkers (calcium, phosphate, parathormone, and creatinine) and the patients' survival. To this aim, we propose a two‐stage model‐based approach for multivariate longitudinal and survival data that allowed us to study such complex association structure. The multivariate model suggested in this paper provided new insights in the area of nephrology research showing valid results in comparison with those models studying each longitudinal biomarker with survival separately.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201600244</identifier><identifier>PMID: 29139606</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biomarkers ; Biometry - methods ; Calcium ; Calcium phosphates ; Creatinine ; Data processing ; Dialysis ; Humans ; Longitudinal Studies ; Mathematical models ; Models, Statistical ; Multivariate Analysis ; Multivariate longitudinal data ; Nephrology ; Nephrology peritoneal dialysis ; Peritoneal Dialysis ; Peritoneum ; Phosphates ; Principal Component Analysis ; Survival ; Survival Analysis ; Survival models ; Time Factors ; Two‐stage models</subject><ispartof>Biometrical journal, 2017-11, Vol.59 (6), p.1204-1220</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4350-397a8f5b7108294f6a9053601b5288771a5eea1401c9f468fbb56c18f1964c5b3</citedby><cites>FETCH-LOGICAL-c4350-397a8f5b7108294f6a9053601b5288771a5eea1401c9f468fbb56c18f1964c5b3</cites><orcidid>0000-0002-9725-7202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.201600244$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.201600244$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29139606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guler, Ipek</creatorcontrib><creatorcontrib>Faes, Christel</creatorcontrib><creatorcontrib>Cadarso‐Suárez, Carmen</creatorcontrib><creatorcontrib>Teixeira, Laetitia</creatorcontrib><creatorcontrib>Rodrigues, Anabela</creatorcontrib><creatorcontrib>Mendonça, Denisa</creatorcontrib><title>Two‐stage model for multivariate longitudinal and survival data with application to nephrology research</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>In many follow‐up studies different types of outcomes are collected including longitudinal measurements and time‐to‐event outcomes. Commonly, it is of interest to study the association between them. Joint modeling approaches of a single longitudinal outcome and survival process have recently gained increasing attention from both frequentist and Bayesian perspective. However, in many studies several longitudinal biomarkers are of interest and instead of selecting one single biomarker, the relationships between all these outcomes and their association with survival needs to be investigated. Our motivating study comes from Peritoneal Dialysis Programme in Nephrology research from Nephrology Unit, CHP (Hospital de Santo António), Porto, Portugal in which the interest relies on the possible association between various biomarkers (calcium, phosphate, parathormone, and creatinine) and the patients' survival. To this aim, we propose a two‐stage model‐based approach for multivariate longitudinal and survival data that allowed us to study such complex association structure. The multivariate model suggested in this paper provided new insights in the area of nephrology research showing valid results in comparison with those models studying each longitudinal biomarker with survival separately.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomarkers</subject><subject>Biometry - methods</subject><subject>Calcium</subject><subject>Calcium phosphates</subject><subject>Creatinine</subject><subject>Data processing</subject><subject>Dialysis</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Multivariate longitudinal data</subject><subject>Nephrology</subject><subject>Nephrology peritoneal dialysis</subject><subject>Peritoneal Dialysis</subject><subject>Peritoneum</subject><subject>Phosphates</subject><subject>Principal Component Analysis</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Survival models</subject><subject>Time Factors</subject><subject>Two‐stage models</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u1DAUBWALgehQ2LJEltiwyXAd_8ReQtVCURGbso5uEmfGIycOttPR7HiEPiNPQoYpXbBhZV3585GuDyGvGawZQPm-ccNuXQJTyyDEE7JismSFAK6ekhXwkhdci-qMvEhpBwAGRPmcnJWGcaNArYi73YdfP-9Txo2lQ-isp32IdJh9dncYHWZLfRg3Ls-dG9FTHDua5ni33HraYUa6d3lLcZq8azG7MNIc6GinbQw-bA402mQxttuX5FmPPtlXD-c5-X51eXvxubj59un64sNN0QouoeCmQt3LpmKgSyN6hQYkV8AaWWpdVQyltcgEsNb0Qum-aaRqme6ZUaKVDT8n7065Uww_ZptyPbjUWu9xtGFO9dFVoLngC337D92FOS5b_lFcK2k4W9T6pNoYUoq2r6foBoyHmkF9LKE-llA_lrA8ePMQOzeD7R75319fgDiBvfP28J-4-uP11y9Mc-C_AXnek5U</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Guler, Ipek</creator><creator>Faes, Christel</creator><creator>Cadarso‐Suárez, Carmen</creator><creator>Teixeira, Laetitia</creator><creator>Rodrigues, Anabela</creator><creator>Mendonça, Denisa</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9725-7202</orcidid></search><sort><creationdate>201711</creationdate><title>Two‐stage model for multivariate longitudinal and survival data with application to nephrology research</title><author>Guler, Ipek ; Faes, Christel ; Cadarso‐Suárez, Carmen ; Teixeira, Laetitia ; Rodrigues, Anabela ; Mendonça, Denisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4350-397a8f5b7108294f6a9053601b5288771a5eea1401c9f468fbb56c18f1964c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomarkers</topic><topic>Biometry - methods</topic><topic>Calcium</topic><topic>Calcium phosphates</topic><topic>Creatinine</topic><topic>Data processing</topic><topic>Dialysis</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Multivariate longitudinal data</topic><topic>Nephrology</topic><topic>Nephrology peritoneal dialysis</topic><topic>Peritoneal Dialysis</topic><topic>Peritoneum</topic><topic>Phosphates</topic><topic>Principal Component Analysis</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Survival models</topic><topic>Time Factors</topic><topic>Two‐stage models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guler, Ipek</creatorcontrib><creatorcontrib>Faes, Christel</creatorcontrib><creatorcontrib>Cadarso‐Suárez, Carmen</creatorcontrib><creatorcontrib>Teixeira, Laetitia</creatorcontrib><creatorcontrib>Rodrigues, Anabela</creatorcontrib><creatorcontrib>Mendonça, Denisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guler, Ipek</au><au>Faes, Christel</au><au>Cadarso‐Suárez, Carmen</au><au>Teixeira, Laetitia</au><au>Rodrigues, Anabela</au><au>Mendonça, Denisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two‐stage model for multivariate longitudinal and survival data with application to nephrology research</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2017-11</date><risdate>2017</risdate><volume>59</volume><issue>6</issue><spage>1204</spage><epage>1220</epage><pages>1204-1220</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>In many follow‐up studies different types of outcomes are collected including longitudinal measurements and time‐to‐event outcomes. Commonly, it is of interest to study the association between them. Joint modeling approaches of a single longitudinal outcome and survival process have recently gained increasing attention from both frequentist and Bayesian perspective. However, in many studies several longitudinal biomarkers are of interest and instead of selecting one single biomarker, the relationships between all these outcomes and their association with survival needs to be investigated. Our motivating study comes from Peritoneal Dialysis Programme in Nephrology research from Nephrology Unit, CHP (Hospital de Santo António), Porto, Portugal in which the interest relies on the possible association between various biomarkers (calcium, phosphate, parathormone, and creatinine) and the patients' survival. To this aim, we propose a two‐stage model‐based approach for multivariate longitudinal and survival data that allowed us to study such complex association structure. The multivariate model suggested in this paper provided new insights in the area of nephrology research showing valid results in comparison with those models studying each longitudinal biomarker with survival separately.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>29139606</pmid><doi>10.1002/bimj.201600244</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9725-7202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2017-11, Vol.59 (6), p.1204-1220
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_1964708343
source MEDLINE; Wiley Online Library
subjects Bayes Theorem
Bayesian analysis
Biomarkers
Biometry - methods
Calcium
Calcium phosphates
Creatinine
Data processing
Dialysis
Humans
Longitudinal Studies
Mathematical models
Models, Statistical
Multivariate Analysis
Multivariate longitudinal data
Nephrology
Nephrology peritoneal dialysis
Peritoneal Dialysis
Peritoneum
Phosphates
Principal Component Analysis
Survival
Survival Analysis
Survival models
Time Factors
Two‐stage models
title Two‐stage model for multivariate longitudinal and survival data with application to nephrology research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%E2%80%90stage%20model%20for%20multivariate%20longitudinal%20and%20survival%20data%20with%20application%20to%20nephrology%20research&rft.jtitle=Biometrical%20journal&rft.au=Guler,%20Ipek&rft.date=2017-11&rft.volume=59&rft.issue=6&rft.spage=1204&rft.epage=1220&rft.pages=1204-1220&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201600244&rft_dat=%3Cproquest_cross%3E1963865931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1963865931&rft_id=info:pmid/29139606&rfr_iscdi=true