First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2017-11, Vol.62 (23), p.L41-L50
Hauptverfasser: Raaymakers, B W, Jürgenliemk-Schulz, I M, Bol, G H, Glitzner, M, Kotte, A N T J, van Asselen, B, de Boer, J C J, Bluemink, J J, Hackett, S L, Moerland, M A, Woodings, S J, Wolthaus, J W H, van Zijp, H M, Philippens, M E P, Tijssen, R, Kok, J G M, de Groot-van Breugel, E N, Kiekebosch, I, Meijers, L T C, Nomden, C N, Sikkes, G G, Doornaert, P A H, Eppinga, W S C, Kasperts, N, Kerkmeijer, L G W, Tersteeg, J H A, Brown, K J, Pais, B, Woodhead, P, Lagendijk, J J W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L50
container_issue 23
container_start_page L41
container_title Physics in medicine & biology
container_volume 62
creator Raaymakers, B W
Jürgenliemk-Schulz, I M
Bol, G H
Glitzner, M
Kotte, A N T J
van Asselen, B
de Boer, J C J
Bluemink, J J
Hackett, S L
Moerland, M A
Woodings, S J
Wolthaus, J W H
van Zijp, H M
Philippens, M E P
Tijssen, R
Kok, J G M
de Groot-van Breugel, E N
Kiekebosch, I
Meijers, L T C
Nomden, C N
Sikkes, G G
Doornaert, P A H
Eppinga, W S C
Kasperts, N
Kerkmeijer, L G W
Tersteeg, J H A
Brown, K J
Pais, B
Woodhead, P
Lagendijk, J J W
description The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.
doi_str_mv 10.1088/1361-6560/aa9517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1964702421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964702421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-100fa2367921d2e398ef1d1861aa4d2917ab15d74964b1e998c5da62311624c3</originalsourceid><addsrcrecordid>eNp9UU1rFTEUDaLYZ3XvSrIRXHTa3CTz5U6K1cITQd4-3Jdk-lJmJjHJIP0L_mozTO1KhMDNvZxzLudcQt4CuwTWdVcgGqiaumFXiH0N7TOyexo9JzvGBFQ91PUZeZXSPWMAHZcvyRnvQdSyhR35feNiyjRgdnbOieZoMVtDf7l8okjhsqYH-u3HbbV3M-qPVI9udhpHGqL3Ay1P-1nbkNcv0pO7O1UhWu2S8_PF1g_OjmYVoXeLM0U8onE-n2zE8LBtnMry1-TFgGOybx7rOTncfD5cf63237_cXn_aV1qyLlfA2IBcNG3PwXAr-s4OYKBrAFGa4qzFI9SmlX0jj2D7vtO1wYYLgIZLLc7Jh022OPi52JTV5JK244iz9UtSUHgt45JDgbINqqNPKdpBhegmjA8KmFoPoNa01Zq22g5QKO8e1ZfjZM0T4W_iBXCxAZwP6t4vcS5e_6f3_h_wMB1VwxUXai9BBTOIP47fmlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964702421</pqid></control><display><type>article</type><title>First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Raaymakers, B W ; Jürgenliemk-Schulz, I M ; Bol, G H ; Glitzner, M ; Kotte, A N T J ; van Asselen, B ; de Boer, J C J ; Bluemink, J J ; Hackett, S L ; Moerland, M A ; Woodings, S J ; Wolthaus, J W H ; van Zijp, H M ; Philippens, M E P ; Tijssen, R ; Kok, J G M ; de Groot-van Breugel, E N ; Kiekebosch, I ; Meijers, L T C ; Nomden, C N ; Sikkes, G G ; Doornaert, P A H ; Eppinga, W S C ; Kasperts, N ; Kerkmeijer, L G W ; Tersteeg, J H A ; Brown, K J ; Pais, B ; Woodhead, P ; Lagendijk, J J W</creator><creatorcontrib>Raaymakers, B W ; Jürgenliemk-Schulz, I M ; Bol, G H ; Glitzner, M ; Kotte, A N T J ; van Asselen, B ; de Boer, J C J ; Bluemink, J J ; Hackett, S L ; Moerland, M A ; Woodings, S J ; Wolthaus, J W H ; van Zijp, H M ; Philippens, M E P ; Tijssen, R ; Kok, J G M ; de Groot-van Breugel, E N ; Kiekebosch, I ; Meijers, L T C ; Nomden, C N ; Sikkes, G G ; Doornaert, P A H ; Eppinga, W S C ; Kasperts, N ; Kerkmeijer, L G W ; Tersteeg, J H A ; Brown, K J ; Pais, B ; Woodhead, P ; Lagendijk, J J W</creatorcontrib><description>The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa9517</identifier><identifier>PMID: 29135471</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>1.5 T MRI ; Aged ; Bone Neoplasms - radiotherapy ; Bone Neoplasms - secondary ; first clinical treatment ; Humans ; Lumbosacral Region - radiation effects ; Magnetic Resonance Imaging - instrumentation ; Middle Aged ; MRI linac ; Particle Accelerators - instrumentation ; Phantoms, Imaging ; Radiometry ; radiotherapy ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Image-Guided - methods ; Spinal Neoplasms - pathology ; Spinal Neoplasms - radiotherapy</subject><ispartof>Physics in medicine &amp; biology, 2017-11, Vol.62 (23), p.L41-L50</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-100fa2367921d2e398ef1d1861aa4d2917ab15d74964b1e998c5da62311624c3</citedby><cites>FETCH-LOGICAL-c408t-100fa2367921d2e398ef1d1861aa4d2917ab15d74964b1e998c5da62311624c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa9517/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29135471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raaymakers, B W</creatorcontrib><creatorcontrib>Jürgenliemk-Schulz, I M</creatorcontrib><creatorcontrib>Bol, G H</creatorcontrib><creatorcontrib>Glitzner, M</creatorcontrib><creatorcontrib>Kotte, A N T J</creatorcontrib><creatorcontrib>van Asselen, B</creatorcontrib><creatorcontrib>de Boer, J C J</creatorcontrib><creatorcontrib>Bluemink, J J</creatorcontrib><creatorcontrib>Hackett, S L</creatorcontrib><creatorcontrib>Moerland, M A</creatorcontrib><creatorcontrib>Woodings, S J</creatorcontrib><creatorcontrib>Wolthaus, J W H</creatorcontrib><creatorcontrib>van Zijp, H M</creatorcontrib><creatorcontrib>Philippens, M E P</creatorcontrib><creatorcontrib>Tijssen, R</creatorcontrib><creatorcontrib>Kok, J G M</creatorcontrib><creatorcontrib>de Groot-van Breugel, E N</creatorcontrib><creatorcontrib>Kiekebosch, I</creatorcontrib><creatorcontrib>Meijers, L T C</creatorcontrib><creatorcontrib>Nomden, C N</creatorcontrib><creatorcontrib>Sikkes, G G</creatorcontrib><creatorcontrib>Doornaert, P A H</creatorcontrib><creatorcontrib>Eppinga, W S C</creatorcontrib><creatorcontrib>Kasperts, N</creatorcontrib><creatorcontrib>Kerkmeijer, L G W</creatorcontrib><creatorcontrib>Tersteeg, J H A</creatorcontrib><creatorcontrib>Brown, K J</creatorcontrib><creatorcontrib>Pais, B</creatorcontrib><creatorcontrib>Woodhead, P</creatorcontrib><creatorcontrib>Lagendijk, J J W</creatorcontrib><title>First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.</description><subject>1.5 T MRI</subject><subject>Aged</subject><subject>Bone Neoplasms - radiotherapy</subject><subject>Bone Neoplasms - secondary</subject><subject>first clinical treatment</subject><subject>Humans</subject><subject>Lumbosacral Region - radiation effects</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Middle Aged</subject><subject>MRI linac</subject><subject>Particle Accelerators - instrumentation</subject><subject>Phantoms, Imaging</subject><subject>Radiometry</subject><subject>radiotherapy</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Image-Guided - methods</subject><subject>Spinal Neoplasms - pathology</subject><subject>Spinal Neoplasms - radiotherapy</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1rFTEUDaLYZ3XvSrIRXHTa3CTz5U6K1cITQd4-3Jdk-lJmJjHJIP0L_mozTO1KhMDNvZxzLudcQt4CuwTWdVcgGqiaumFXiH0N7TOyexo9JzvGBFQ91PUZeZXSPWMAHZcvyRnvQdSyhR35feNiyjRgdnbOieZoMVtDf7l8okjhsqYH-u3HbbV3M-qPVI9udhpHGqL3Ay1P-1nbkNcv0pO7O1UhWu2S8_PF1g_OjmYVoXeLM0U8onE-n2zE8LBtnMry1-TFgGOybx7rOTncfD5cf63237_cXn_aV1qyLlfA2IBcNG3PwXAr-s4OYKBrAFGa4qzFI9SmlX0jj2D7vtO1wYYLgIZLLc7Jh022OPi52JTV5JK244iz9UtSUHgt45JDgbINqqNPKdpBhegmjA8KmFoPoNa01Zq22g5QKO8e1ZfjZM0T4W_iBXCxAZwP6t4vcS5e_6f3_h_wMB1VwxUXai9BBTOIP47fmlQ</recordid><startdate>20171114</startdate><enddate>20171114</enddate><creator>Raaymakers, B W</creator><creator>Jürgenliemk-Schulz, I M</creator><creator>Bol, G H</creator><creator>Glitzner, M</creator><creator>Kotte, A N T J</creator><creator>van Asselen, B</creator><creator>de Boer, J C J</creator><creator>Bluemink, J J</creator><creator>Hackett, S L</creator><creator>Moerland, M A</creator><creator>Woodings, S J</creator><creator>Wolthaus, J W H</creator><creator>van Zijp, H M</creator><creator>Philippens, M E P</creator><creator>Tijssen, R</creator><creator>Kok, J G M</creator><creator>de Groot-van Breugel, E N</creator><creator>Kiekebosch, I</creator><creator>Meijers, L T C</creator><creator>Nomden, C N</creator><creator>Sikkes, G G</creator><creator>Doornaert, P A H</creator><creator>Eppinga, W S C</creator><creator>Kasperts, N</creator><creator>Kerkmeijer, L G W</creator><creator>Tersteeg, J H A</creator><creator>Brown, K J</creator><creator>Pais, B</creator><creator>Woodhead, P</creator><creator>Lagendijk, J J W</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171114</creationdate><title>First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment</title><author>Raaymakers, B W ; Jürgenliemk-Schulz, I M ; Bol, G H ; Glitzner, M ; Kotte, A N T J ; van Asselen, B ; de Boer, J C J ; Bluemink, J J ; Hackett, S L ; Moerland, M A ; Woodings, S J ; Wolthaus, J W H ; van Zijp, H M ; Philippens, M E P ; Tijssen, R ; Kok, J G M ; de Groot-van Breugel, E N ; Kiekebosch, I ; Meijers, L T C ; Nomden, C N ; Sikkes, G G ; Doornaert, P A H ; Eppinga, W S C ; Kasperts, N ; Kerkmeijer, L G W ; Tersteeg, J H A ; Brown, K J ; Pais, B ; Woodhead, P ; Lagendijk, J J W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-100fa2367921d2e398ef1d1861aa4d2917ab15d74964b1e998c5da62311624c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1.5 T MRI</topic><topic>Aged</topic><topic>Bone Neoplasms - radiotherapy</topic><topic>Bone Neoplasms - secondary</topic><topic>first clinical treatment</topic><topic>Humans</topic><topic>Lumbosacral Region - radiation effects</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Middle Aged</topic><topic>MRI linac</topic><topic>Particle Accelerators - instrumentation</topic><topic>Phantoms, Imaging</topic><topic>Radiometry</topic><topic>radiotherapy</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Image-Guided - methods</topic><topic>Spinal Neoplasms - pathology</topic><topic>Spinal Neoplasms - radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raaymakers, B W</creatorcontrib><creatorcontrib>Jürgenliemk-Schulz, I M</creatorcontrib><creatorcontrib>Bol, G H</creatorcontrib><creatorcontrib>Glitzner, M</creatorcontrib><creatorcontrib>Kotte, A N T J</creatorcontrib><creatorcontrib>van Asselen, B</creatorcontrib><creatorcontrib>de Boer, J C J</creatorcontrib><creatorcontrib>Bluemink, J J</creatorcontrib><creatorcontrib>Hackett, S L</creatorcontrib><creatorcontrib>Moerland, M A</creatorcontrib><creatorcontrib>Woodings, S J</creatorcontrib><creatorcontrib>Wolthaus, J W H</creatorcontrib><creatorcontrib>van Zijp, H M</creatorcontrib><creatorcontrib>Philippens, M E P</creatorcontrib><creatorcontrib>Tijssen, R</creatorcontrib><creatorcontrib>Kok, J G M</creatorcontrib><creatorcontrib>de Groot-van Breugel, E N</creatorcontrib><creatorcontrib>Kiekebosch, I</creatorcontrib><creatorcontrib>Meijers, L T C</creatorcontrib><creatorcontrib>Nomden, C N</creatorcontrib><creatorcontrib>Sikkes, G G</creatorcontrib><creatorcontrib>Doornaert, P A H</creatorcontrib><creatorcontrib>Eppinga, W S C</creatorcontrib><creatorcontrib>Kasperts, N</creatorcontrib><creatorcontrib>Kerkmeijer, L G W</creatorcontrib><creatorcontrib>Tersteeg, J H A</creatorcontrib><creatorcontrib>Brown, K J</creatorcontrib><creatorcontrib>Pais, B</creatorcontrib><creatorcontrib>Woodhead, P</creatorcontrib><creatorcontrib>Lagendijk, J J W</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raaymakers, B W</au><au>Jürgenliemk-Schulz, I M</au><au>Bol, G H</au><au>Glitzner, M</au><au>Kotte, A N T J</au><au>van Asselen, B</au><au>de Boer, J C J</au><au>Bluemink, J J</au><au>Hackett, S L</au><au>Moerland, M A</au><au>Woodings, S J</au><au>Wolthaus, J W H</au><au>van Zijp, H M</au><au>Philippens, M E P</au><au>Tijssen, R</au><au>Kok, J G M</au><au>de Groot-van Breugel, E N</au><au>Kiekebosch, I</au><au>Meijers, L T C</au><au>Nomden, C N</au><au>Sikkes, G G</au><au>Doornaert, P A H</au><au>Eppinga, W S C</au><au>Kasperts, N</au><au>Kerkmeijer, L G W</au><au>Tersteeg, J H A</au><au>Brown, K J</au><au>Pais, B</au><au>Woodhead, P</au><au>Lagendijk, J J W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2017-11-14</date><risdate>2017</risdate><volume>62</volume><issue>23</issue><spage>L41</spage><epage>L50</epage><pages>L41-L50</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29135471</pmid><doi>10.1088/1361-6560/aa9517</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2017-11, Vol.62 (23), p.L41-L50
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_proquest_miscellaneous_1964702421
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 1.5 T MRI
Aged
Bone Neoplasms - radiotherapy
Bone Neoplasms - secondary
first clinical treatment
Humans
Lumbosacral Region - radiation effects
Magnetic Resonance Imaging - instrumentation
Middle Aged
MRI linac
Particle Accelerators - instrumentation
Phantoms, Imaging
Radiometry
radiotherapy
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Image-Guided - methods
Spinal Neoplasms - pathology
Spinal Neoplasms - radiotherapy
title First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20patients%20treated%20with%20a%201.5%20T%20MRI-Linac:%20clinical%20proof%20of%20concept%20of%20a%20high-precision,%20high-field%20MRI%20guided%20radiotherapy%20treatment&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Raaymakers,%20B%20W&rft.date=2017-11-14&rft.volume=62&rft.issue=23&rft.spage=L41&rft.epage=L50&rft.pages=L41-L50&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa9517&rft_dat=%3Cproquest_cross%3E1964702421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964702421&rft_id=info:pmid/29135471&rfr_iscdi=true