A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings

Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anaesthesia and intensive care 2017-11, Vol.45 (6), p.752-757
Hauptverfasser: Freebairn, S. H., Imlay, R., Barrett, E., Park, M. A. J., Freebairn, R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 757
container_issue 6
container_start_page 752
container_title Anaesthesia and intensive care
container_volume 45
creator Freebairn, S. H.
Imlay, R.
Barrett, E.
Park, M. A. J.
Freebairn, R. C.
description Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.
doi_str_mv 10.1177/0310057X1704500616
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1964701547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><informt_id>10.3316/informit.374118501738726</informt_id><sage_id>10.1177_0310057X1704500616</sage_id><sourcerecordid>1977738786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8049e14ec1a1c2bd06ef6e37d00d0f6f7fa4b1bffc5fdc5bdeb5f0f16e71ecfa3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEokPhD7BAltiwCfVNnDizrCpeUiU2IHVnOfb14FFiB1-nYpb8czyd8hBIrCzd851j-56qeg78NYCUF7wFzjt5A5KLjvMe-gfVBoQYat5IeFhtjkB9JM6qJ0R7zmHbyO5xddZsoZXdIDfV90s2rWHH5mhxYjkyi3MMlJPOyOwh6NkbttPEymRZfCF1sMyHnHygIi2RfPa3yDDYGr8tvhhjOrAlIdGakOnMEurJUy70LYbsJ519DIww55JHT6tHTk-Ez-7P8-rz2zefrt7X1x_ffbi6vK6NEDLXAxdbBIEGNJhmtLxH12MrLeeWu95Jp8UIo3Omc9Z0o8Wxc9xBjxLQON2eV69OuUuKX1ekrGZPBqdJB4wrKdj2QnLohCzoy7_QfVxTKK8rlJSyHeTQF6o5USZFooROLcnPOh0UcHUsSP1bUDG9uI9exxntL8vPRgpwcQJI7_CPe_8XeXNypNlnZeI0oTlumPY6kyLUyXxRPrh4p8e0UzZ6pce70LaF_rfYSgEwdByOX2z69gdUArwv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977738786</pqid></control><display><type>article</type><title>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</title><source>MEDLINE</source><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Freebairn, S. H. ; Imlay, R. ; Barrett, E. ; Park, M. A. J. ; Freebairn, R. C.</creator><creatorcontrib>Freebairn, S. H. ; Imlay, R. ; Barrett, E. ; Park, M. A. J. ; Freebairn, R. C.</creatorcontrib><description>Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.</description><identifier>ISSN: 0310-057X</identifier><identifier>EISSN: 1448-0271</identifier><identifier>DOI: 10.1177/0310057X1704500616</identifier><identifier>PMID: 29137587</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Airway management ; Anesthesia ; Asthmatics ; Humans ; Intensive care ; Intensive care units ; Lung - physiology ; Lungs ; Patients ; Positive-Pressure Respiration ; Respirators (Medical equipment) ; Ventilators</subject><ispartof>Anaesthesia and intensive care, 2017-11, Vol.45 (6), p.752-757</ispartof><rights>2017 Australian Society of Anaesthetists</rights><rights>Copyright Australian Society of Anaesthetists Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c447t-8049e14ec1a1c2bd06ef6e37d00d0f6f7fa4b1bffc5fdc5bdeb5f0f16e71ecfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0310057X1704500616$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0310057X1704500616$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29137587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freebairn, S. H.</creatorcontrib><creatorcontrib>Imlay, R.</creatorcontrib><creatorcontrib>Barrett, E.</creatorcontrib><creatorcontrib>Park, M. A. J.</creatorcontrib><creatorcontrib>Freebairn, R. C.</creatorcontrib><title>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</title><title>Anaesthesia and intensive care</title><addtitle>Anaesth Intensive Care</addtitle><description>Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.</description><subject>Airway management</subject><subject>Anesthesia</subject><subject>Asthmatics</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intensive care units</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Patients</subject><subject>Positive-Pressure Respiration</subject><subject>Respirators (Medical equipment)</subject><subject>Ventilators</subject><issn>0310-057X</issn><issn>1448-0271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAUhSMEokPhD7BAltiwCfVNnDizrCpeUiU2IHVnOfb14FFiB1-nYpb8czyd8hBIrCzd851j-56qeg78NYCUF7wFzjt5A5KLjvMe-gfVBoQYat5IeFhtjkB9JM6qJ0R7zmHbyO5xddZsoZXdIDfV90s2rWHH5mhxYjkyi3MMlJPOyOwh6NkbttPEymRZfCF1sMyHnHygIi2RfPa3yDDYGr8tvhhjOrAlIdGakOnMEurJUy70LYbsJ519DIww55JHT6tHTk-Ez-7P8-rz2zefrt7X1x_ffbi6vK6NEDLXAxdbBIEGNJhmtLxH12MrLeeWu95Jp8UIo3Omc9Z0o8Wxc9xBjxLQON2eV69OuUuKX1ekrGZPBqdJB4wrKdj2QnLohCzoy7_QfVxTKK8rlJSyHeTQF6o5USZFooROLcnPOh0UcHUsSP1bUDG9uI9exxntL8vPRgpwcQJI7_CPe_8XeXNypNlnZeI0oTlumPY6kyLUyXxRPrh4p8e0UzZ6pce70LaF_rfYSgEwdByOX2z69gdUArwv</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Freebairn, S. H.</creator><creator>Imlay, R.</creator><creator>Barrett, E.</creator><creator>Park, M. A. J.</creator><creator>Freebairn, R. C.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AYAGU</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</title><author>Freebairn, S. H. ; Imlay, R. ; Barrett, E. ; Park, M. A. J. ; Freebairn, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8049e14ec1a1c2bd06ef6e37d00d0f6f7fa4b1bffc5fdc5bdeb5f0f16e71ecfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airway management</topic><topic>Anesthesia</topic><topic>Asthmatics</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intensive care units</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Patients</topic><topic>Positive-Pressure Respiration</topic><topic>Respirators (Medical equipment)</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freebairn, S. H.</creatorcontrib><creatorcontrib>Imlay, R.</creatorcontrib><creatorcontrib>Barrett, E.</creatorcontrib><creatorcontrib>Park, M. A. J.</creatorcontrib><creatorcontrib>Freebairn, R. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Australia &amp; New Zealand Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Anaesthesia and intensive care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freebairn, S. H.</au><au>Imlay, R.</au><au>Barrett, E.</au><au>Park, M. A. J.</au><au>Freebairn, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</atitle><jtitle>Anaesthesia and intensive care</jtitle><addtitle>Anaesth Intensive Care</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>45</volume><issue>6</issue><spage>752</spage><epage>757</epage><pages>752-757</pages><issn>0310-057X</issn><eissn>1448-0271</eissn><abstract>Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>29137587</pmid><doi>10.1177/0310057X1704500616</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0310-057X
ispartof Anaesthesia and intensive care, 2017-11, Vol.45 (6), p.752-757
issn 0310-057X
1448-0271
language eng
recordid cdi_proquest_miscellaneous_1964701547
source MEDLINE; SAGE Complete; Alma/SFX Local Collection
subjects Airway management
Anesthesia
Asthmatics
Humans
Intensive care
Intensive care units
Lung - physiology
Lungs
Patients
Positive-Pressure Respiration
Respirators (Medical equipment)
Ventilators
title A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lung%20model%20to%20demonstrate%20dynamic%20gas%20trapping%20and%20intrinsic%20positive%20end-expiratory%20pressure%20at%20realistic%20ventilation%20settings&rft.jtitle=Anaesthesia%20and%20intensive%20care&rft.au=Freebairn,%20S.%20H.&rft.date=2017-11-01&rft.volume=45&rft.issue=6&rft.spage=752&rft.epage=757&rft.pages=752-757&rft.issn=0310-057X&rft.eissn=1448-0271&rft_id=info:doi/10.1177/0310057X1704500616&rft_dat=%3Cproquest_cross%3E1977738786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977738786&rft_id=info:pmid/29137587&rft_informt_id=10.3316/informit.374118501738726&rft_sage_id=10.1177_0310057X1704500616&rfr_iscdi=true