A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings
Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that...
Gespeichert in:
Veröffentlicht in: | Anaesthesia and intensive care 2017-11, Vol.45 (6), p.752-757 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 757 |
---|---|
container_issue | 6 |
container_start_page | 752 |
container_title | Anaesthesia and intensive care |
container_volume | 45 |
creator | Freebairn, S. H. Imlay, R. Barrett, E. Park, M. A. J. Freebairn, R. C. |
description | Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems. |
doi_str_mv | 10.1177/0310057X1704500616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1964701547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><informt_id>10.3316/informit.374118501738726</informt_id><sage_id>10.1177_0310057X1704500616</sage_id><sourcerecordid>1977738786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8049e14ec1a1c2bd06ef6e37d00d0f6f7fa4b1bffc5fdc5bdeb5f0f16e71ecfa3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEokPhD7BAltiwCfVNnDizrCpeUiU2IHVnOfb14FFiB1-nYpb8czyd8hBIrCzd851j-56qeg78NYCUF7wFzjt5A5KLjvMe-gfVBoQYat5IeFhtjkB9JM6qJ0R7zmHbyO5xddZsoZXdIDfV90s2rWHH5mhxYjkyi3MMlJPOyOwh6NkbttPEymRZfCF1sMyHnHygIi2RfPa3yDDYGr8tvhhjOrAlIdGakOnMEurJUy70LYbsJ519DIww55JHT6tHTk-Ez-7P8-rz2zefrt7X1x_ffbi6vK6NEDLXAxdbBIEGNJhmtLxH12MrLeeWu95Jp8UIo3Omc9Z0o8Wxc9xBjxLQON2eV69OuUuKX1ekrGZPBqdJB4wrKdj2QnLohCzoy7_QfVxTKK8rlJSyHeTQF6o5USZFooROLcnPOh0UcHUsSP1bUDG9uI9exxntL8vPRgpwcQJI7_CPe_8XeXNypNlnZeI0oTlumPY6kyLUyXxRPrh4p8e0UzZ6pce70LaF_rfYSgEwdByOX2z69gdUArwv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977738786</pqid></control><display><type>article</type><title>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</title><source>MEDLINE</source><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Freebairn, S. H. ; Imlay, R. ; Barrett, E. ; Park, M. A. J. ; Freebairn, R. C.</creator><creatorcontrib>Freebairn, S. H. ; Imlay, R. ; Barrett, E. ; Park, M. A. J. ; Freebairn, R. C.</creatorcontrib><description>Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.</description><identifier>ISSN: 0310-057X</identifier><identifier>EISSN: 1448-0271</identifier><identifier>DOI: 10.1177/0310057X1704500616</identifier><identifier>PMID: 29137587</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Airway management ; Anesthesia ; Asthmatics ; Humans ; Intensive care ; Intensive care units ; Lung - physiology ; Lungs ; Patients ; Positive-Pressure Respiration ; Respirators (Medical equipment) ; Ventilators</subject><ispartof>Anaesthesia and intensive care, 2017-11, Vol.45 (6), p.752-757</ispartof><rights>2017 Australian Society of Anaesthetists</rights><rights>Copyright Australian Society of Anaesthetists Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c447t-8049e14ec1a1c2bd06ef6e37d00d0f6f7fa4b1bffc5fdc5bdeb5f0f16e71ecfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0310057X1704500616$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0310057X1704500616$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29137587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freebairn, S. H.</creatorcontrib><creatorcontrib>Imlay, R.</creatorcontrib><creatorcontrib>Barrett, E.</creatorcontrib><creatorcontrib>Park, M. A. J.</creatorcontrib><creatorcontrib>Freebairn, R. C.</creatorcontrib><title>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</title><title>Anaesthesia and intensive care</title><addtitle>Anaesth Intensive Care</addtitle><description>Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.</description><subject>Airway management</subject><subject>Anesthesia</subject><subject>Asthmatics</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intensive care units</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Patients</subject><subject>Positive-Pressure Respiration</subject><subject>Respirators (Medical equipment)</subject><subject>Ventilators</subject><issn>0310-057X</issn><issn>1448-0271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAUhSMEokPhD7BAltiwCfVNnDizrCpeUiU2IHVnOfb14FFiB1-nYpb8czyd8hBIrCzd851j-56qeg78NYCUF7wFzjt5A5KLjvMe-gfVBoQYat5IeFhtjkB9JM6qJ0R7zmHbyO5xddZsoZXdIDfV90s2rWHH5mhxYjkyi3MMlJPOyOwh6NkbttPEymRZfCF1sMyHnHygIi2RfPa3yDDYGr8tvhhjOrAlIdGakOnMEurJUy70LYbsJ519DIww55JHT6tHTk-Ez-7P8-rz2zefrt7X1x_ffbi6vK6NEDLXAxdbBIEGNJhmtLxH12MrLeeWu95Jp8UIo3Omc9Z0o8Wxc9xBjxLQON2eV69OuUuKX1ekrGZPBqdJB4wrKdj2QnLohCzoy7_QfVxTKK8rlJSyHeTQF6o5USZFooROLcnPOh0UcHUsSP1bUDG9uI9exxntL8vPRgpwcQJI7_CPe_8XeXNypNlnZeI0oTlumPY6kyLUyXxRPrh4p8e0UzZ6pce70LaF_rfYSgEwdByOX2z69gdUArwv</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Freebairn, S. H.</creator><creator>Imlay, R.</creator><creator>Barrett, E.</creator><creator>Park, M. A. J.</creator><creator>Freebairn, R. C.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AYAGU</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</title><author>Freebairn, S. H. ; Imlay, R. ; Barrett, E. ; Park, M. A. J. ; Freebairn, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8049e14ec1a1c2bd06ef6e37d00d0f6f7fa4b1bffc5fdc5bdeb5f0f16e71ecfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airway management</topic><topic>Anesthesia</topic><topic>Asthmatics</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intensive care units</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Patients</topic><topic>Positive-Pressure Respiration</topic><topic>Respirators (Medical equipment)</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freebairn, S. H.</creatorcontrib><creatorcontrib>Imlay, R.</creatorcontrib><creatorcontrib>Barrett, E.</creatorcontrib><creatorcontrib>Park, M. A. J.</creatorcontrib><creatorcontrib>Freebairn, R. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Australia & New Zealand Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Anaesthesia and intensive care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freebairn, S. H.</au><au>Imlay, R.</au><au>Barrett, E.</au><au>Park, M. A. J.</au><au>Freebairn, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings</atitle><jtitle>Anaesthesia and intensive care</jtitle><addtitle>Anaesth Intensive Care</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>45</volume><issue>6</issue><spage>752</spage><epage>757</epage><pages>752-757</pages><issn>0310-057X</issn><eissn>1448-0271</eissn><abstract>Intrinsic positive end-expiratory pressure (PEEP) and gas trapping are recognised hazards during ventilation of patients with airflow obstruction. Demonstration of these phenomena on conventional lung models using realistic ventilation settings is difficult. We describe an Intrinsic PEEP Model that is able to demonstrate dynamic gas trapping and intrinsic PEEP at realistic ventilation settings, and demonstrate its ability to develop intrinsic PEEP in a timeframe useful for teaching. The model uses a Heimlich valve to permit a lower resistance on inspiration than expiration. The model was tested using a series of typical ventilation settings which, when applied in a clinical setting on patients with airflow obstruction issues, would result in prolonged low expiratory flow and the development of intrinsic PEEP of 10 to 20 cmH2O, and ultimately significant gas trapping. The IPM can be used to demonstrate this effect and the ventilator adjustments required to minimise these problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>29137587</pmid><doi>10.1177/0310057X1704500616</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0310-057X |
ispartof | Anaesthesia and intensive care, 2017-11, Vol.45 (6), p.752-757 |
issn | 0310-057X 1448-0271 |
language | eng |
recordid | cdi_proquest_miscellaneous_1964701547 |
source | MEDLINE; SAGE Complete; Alma/SFX Local Collection |
subjects | Airway management Anesthesia Asthmatics Humans Intensive care Intensive care units Lung - physiology Lungs Patients Positive-Pressure Respiration Respirators (Medical equipment) Ventilators |
title | A lung model to demonstrate dynamic gas trapping and intrinsic positive end-expiratory pressure at realistic ventilation settings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lung%20model%20to%20demonstrate%20dynamic%20gas%20trapping%20and%20intrinsic%20positive%20end-expiratory%20pressure%20at%20realistic%20ventilation%20settings&rft.jtitle=Anaesthesia%20and%20intensive%20care&rft.au=Freebairn,%20S.%20H.&rft.date=2017-11-01&rft.volume=45&rft.issue=6&rft.spage=752&rft.epage=757&rft.pages=752-757&rft.issn=0310-057X&rft.eissn=1448-0271&rft_id=info:doi/10.1177/0310057X1704500616&rft_dat=%3Cproquest_cross%3E1977738786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977738786&rft_id=info:pmid/29137587&rft_informt_id=10.3316/informit.374118501738726&rft_sage_id=10.1177_0310057X1704500616&rfr_iscdi=true |