Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific

Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying physico-chemical conditions that reflect the availability of nutritional resources. Histological te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biology 2007-04, Vol.151 (2), p.649-662
Hauptverfasser: Kelly, Noreen E, Metaxas, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue 2
container_start_page 649
container_title Marine biology
container_volume 151
creator Kelly, Noreen E
Metaxas, Anna
description Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying physico-chemical conditions that reflect the availability of nutritional resources. Histological techniques were used to determine size at first reproduction, gametogenesis, reproductive output, and fecundity in relation to shell length (SL), through examination of the gonads of male and female L. fucensis, collected from five different hydrothermal vent habitat types with different temperature anomalies and hydrothermal fluid flow vigour: vigorous (VIG), diffuse (DIF), tubeworm bushes (TWB), peripheral (PER), and senescent areas (SEN). Both male and female L. fucensis exhibited early maturity, with the first reproductive event occurring at 3.8 and 3.9 mm shell length, respectively. All stages of gamete development were present in the gonads of males and females, suggesting continuous gametogenesis and asynchronous reproduction in this species. Gametogenic maturity of limpets did not vary among actively venting habitats (VIG, DIF, TWB, and PER), but was significantly lower in males and females from SEN habitats. Mean oocyte diameter was largest in females from VIG habitats, and smallest in females from SEN habitats, than in those from the other habitats (DIF, TWB, and PER). Females from actively venting habitats also had greater actual fecundity than those from senescent habitats. While the gametogenic pattern of L. fucensis appears phylogenetically constrained, selection of actively venting habitats by L. fucensis maximizes its reproductive output. The multiple feeding strategies of L. fucensis may allow for a constant supply of energy to be allocated to reproduction in any habitat except senescent vents. Early maturity, high fecundity, and continuous production of gametes suggest a reproductive strategy characteristic of an opportunistic species, and may be contributing to the extremely abundant populations of L. fucensis observed in the Northeast Pacific vent ecosystem.
doi_str_mv 10.1007/s00227-006-0505-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19643917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1241503511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-842f540f4556b54baa2b5e524f200d6b4a896a0c981915121566bc13e26ccdc53</originalsourceid><addsrcrecordid>eNpdkc2KFDEQgBtRcFx9AE8GQdFDa5JO0t3eZPFnYfwBXa-hOl2ZyZLu9Cbphdn38T3NOAuClxSp-qqo5Kuqp4y-YZS2bxOlnLc1paqmksr69l61YaLhNWv75n61KWVZN0zxh9WjlK5oube82VS_L2brV5wNkmDJHgaXIZMwk7xHEnGJYVxNdjdIBhd82B2O2LE2Ii51QiD7wxhDycQJPLnBORPvpgUz2WI5wxidXxOxq8E5uURe_cLsdpByDEsY4R35EnwBDLwmNobp7-yvIZZQGPIdjLPOPK4eWPAJn9zFs-ry44ef55_r7bdPF-fvt7URvMl1J7iVglohpRqkGAD4IFFyYTmloxoEdL0CavqO9UwyzqRSg2ENcmXMaGRzVr08zS3vvl4xZT25ZNB7mDGsSbNeiaZnbQGf_wdehTXOZTfNaUeVLBsUiJ0gE0NKEa1eopsgHjSj-mhNn6zpYk0frenb0vPibjCUP_E2wmxc-tfYqU71ghXu2YmzEDTsYmEuf3DKVDHbdUV08weaZaNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208065556</pqid></control><display><type>article</type><title>Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific</title><source>SpringerNature Journals</source><creator>Kelly, Noreen E ; Metaxas, Anna</creator><creatorcontrib>Kelly, Noreen E ; Metaxas, Anna</creatorcontrib><description>Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying physico-chemical conditions that reflect the availability of nutritional resources. Histological techniques were used to determine size at first reproduction, gametogenesis, reproductive output, and fecundity in relation to shell length (SL), through examination of the gonads of male and female L. fucensis, collected from five different hydrothermal vent habitat types with different temperature anomalies and hydrothermal fluid flow vigour: vigorous (VIG), diffuse (DIF), tubeworm bushes (TWB), peripheral (PER), and senescent areas (SEN). Both male and female L. fucensis exhibited early maturity, with the first reproductive event occurring at 3.8 and 3.9 mm shell length, respectively. All stages of gamete development were present in the gonads of males and females, suggesting continuous gametogenesis and asynchronous reproduction in this species. Gametogenic maturity of limpets did not vary among actively venting habitats (VIG, DIF, TWB, and PER), but was significantly lower in males and females from SEN habitats. Mean oocyte diameter was largest in females from VIG habitats, and smallest in females from SEN habitats, than in those from the other habitats (DIF, TWB, and PER). Females from actively venting habitats also had greater actual fecundity than those from senescent habitats. While the gametogenic pattern of L. fucensis appears phylogenetically constrained, selection of actively venting habitats by L. fucensis maximizes its reproductive output. The multiple feeding strategies of L. fucensis may allow for a constant supply of energy to be allocated to reproduction in any habitat except senescent vents. Early maturity, high fecundity, and continuous production of gametes suggest a reproductive strategy characteristic of an opportunistic species, and may be contributing to the extremely abundant populations of L. fucensis observed in the Northeast Pacific vent ecosystem.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-006-0505-z</identifier><identifier>CODEN: MBIOAJ</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Animal and plant ecology ; Animal populations ; Animal reproduction ; Animal, plant and microbial ecology ; Aquatic ecosystems ; Biological and medical sciences ; Deep sea ; early development ; ecosystems ; energy ; Fecundity ; feeding methods ; Females ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; gametogenesis ; Gonads ; habitat preferences ; Habitat selection ; Habitats ; Lepetodrilus fucensis ; males ; Marine ; Marine biology ; Mollusca ; Mollusks ; oocytes ; Particular ecosystems ; phylogeny ; physicochemical properties ; reproductive performance ; Sea water ecosystems ; Synecology ; temperature ; tube worms ; Vetigastropoda ; vigor</subject><ispartof>Marine biology, 2007-04, Vol.151 (2), p.649-662</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-842f540f4556b54baa2b5e524f200d6b4a896a0c981915121566bc13e26ccdc53</citedby><cites>FETCH-LOGICAL-c423t-842f540f4556b54baa2b5e524f200d6b4a896a0c981915121566bc13e26ccdc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18686941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Noreen E</creatorcontrib><creatorcontrib>Metaxas, Anna</creatorcontrib><title>Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific</title><title>Marine biology</title><description>Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying physico-chemical conditions that reflect the availability of nutritional resources. Histological techniques were used to determine size at first reproduction, gametogenesis, reproductive output, and fecundity in relation to shell length (SL), through examination of the gonads of male and female L. fucensis, collected from five different hydrothermal vent habitat types with different temperature anomalies and hydrothermal fluid flow vigour: vigorous (VIG), diffuse (DIF), tubeworm bushes (TWB), peripheral (PER), and senescent areas (SEN). Both male and female L. fucensis exhibited early maturity, with the first reproductive event occurring at 3.8 and 3.9 mm shell length, respectively. All stages of gamete development were present in the gonads of males and females, suggesting continuous gametogenesis and asynchronous reproduction in this species. Gametogenic maturity of limpets did not vary among actively venting habitats (VIG, DIF, TWB, and PER), but was significantly lower in males and females from SEN habitats. Mean oocyte diameter was largest in females from VIG habitats, and smallest in females from SEN habitats, than in those from the other habitats (DIF, TWB, and PER). Females from actively venting habitats also had greater actual fecundity than those from senescent habitats. While the gametogenic pattern of L. fucensis appears phylogenetically constrained, selection of actively venting habitats by L. fucensis maximizes its reproductive output. The multiple feeding strategies of L. fucensis may allow for a constant supply of energy to be allocated to reproduction in any habitat except senescent vents. Early maturity, high fecundity, and continuous production of gametes suggest a reproductive strategy characteristic of an opportunistic species, and may be contributing to the extremely abundant populations of L. fucensis observed in the Northeast Pacific vent ecosystem.</description><subject>Animal and plant ecology</subject><subject>Animal populations</subject><subject>Animal reproduction</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic ecosystems</subject><subject>Biological and medical sciences</subject><subject>Deep sea</subject><subject>early development</subject><subject>ecosystems</subject><subject>energy</subject><subject>Fecundity</subject><subject>feeding methods</subject><subject>Females</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gametogenesis</subject><subject>Gonads</subject><subject>habitat preferences</subject><subject>Habitat selection</subject><subject>Habitats</subject><subject>Lepetodrilus fucensis</subject><subject>males</subject><subject>Marine</subject><subject>Marine biology</subject><subject>Mollusca</subject><subject>Mollusks</subject><subject>oocytes</subject><subject>Particular ecosystems</subject><subject>phylogeny</subject><subject>physicochemical properties</subject><subject>reproductive performance</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>temperature</subject><subject>tube worms</subject><subject>Vetigastropoda</subject><subject>vigor</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc2KFDEQgBtRcFx9AE8GQdFDa5JO0t3eZPFnYfwBXa-hOl2ZyZLu9Cbphdn38T3NOAuClxSp-qqo5Kuqp4y-YZS2bxOlnLc1paqmksr69l61YaLhNWv75n61KWVZN0zxh9WjlK5oube82VS_L2brV5wNkmDJHgaXIZMwk7xHEnGJYVxNdjdIBhd82B2O2LE2Ii51QiD7wxhDycQJPLnBORPvpgUz2WI5wxidXxOxq8E5uURe_cLsdpByDEsY4R35EnwBDLwmNobp7-yvIZZQGPIdjLPOPK4eWPAJn9zFs-ry44ef55_r7bdPF-fvt7URvMl1J7iVglohpRqkGAD4IFFyYTmloxoEdL0CavqO9UwyzqRSg2ENcmXMaGRzVr08zS3vvl4xZT25ZNB7mDGsSbNeiaZnbQGf_wdehTXOZTfNaUeVLBsUiJ0gE0NKEa1eopsgHjSj-mhNn6zpYk0frenb0vPibjCUP_E2wmxc-tfYqU71ghXu2YmzEDTsYmEuf3DKVDHbdUV08weaZaNf</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Kelly, Noreen E</creator><creator>Metaxas, Anna</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20070401</creationdate><title>Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific</title><author>Kelly, Noreen E ; Metaxas, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-842f540f4556b54baa2b5e524f200d6b4a896a0c981915121566bc13e26ccdc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal populations</topic><topic>Animal reproduction</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic ecosystems</topic><topic>Biological and medical sciences</topic><topic>Deep sea</topic><topic>early development</topic><topic>ecosystems</topic><topic>energy</topic><topic>Fecundity</topic><topic>feeding methods</topic><topic>Females</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gametogenesis</topic><topic>Gonads</topic><topic>habitat preferences</topic><topic>Habitat selection</topic><topic>Habitats</topic><topic>Lepetodrilus fucensis</topic><topic>males</topic><topic>Marine</topic><topic>Marine biology</topic><topic>Mollusca</topic><topic>Mollusks</topic><topic>oocytes</topic><topic>Particular ecosystems</topic><topic>phylogeny</topic><topic>physicochemical properties</topic><topic>reproductive performance</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>temperature</topic><topic>tube worms</topic><topic>Vetigastropoda</topic><topic>vigor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Noreen E</creatorcontrib><creatorcontrib>Metaxas, Anna</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Noreen E</au><au>Metaxas, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific</atitle><jtitle>Marine biology</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>151</volume><issue>2</issue><spage>649</spage><epage>662</epage><pages>649-662</pages><issn>0025-3162</issn><eissn>1432-1793</eissn><coden>MBIOAJ</coden><abstract>Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying physico-chemical conditions that reflect the availability of nutritional resources. Histological techniques were used to determine size at first reproduction, gametogenesis, reproductive output, and fecundity in relation to shell length (SL), through examination of the gonads of male and female L. fucensis, collected from five different hydrothermal vent habitat types with different temperature anomalies and hydrothermal fluid flow vigour: vigorous (VIG), diffuse (DIF), tubeworm bushes (TWB), peripheral (PER), and senescent areas (SEN). Both male and female L. fucensis exhibited early maturity, with the first reproductive event occurring at 3.8 and 3.9 mm shell length, respectively. All stages of gamete development were present in the gonads of males and females, suggesting continuous gametogenesis and asynchronous reproduction in this species. Gametogenic maturity of limpets did not vary among actively venting habitats (VIG, DIF, TWB, and PER), but was significantly lower in males and females from SEN habitats. Mean oocyte diameter was largest in females from VIG habitats, and smallest in females from SEN habitats, than in those from the other habitats (DIF, TWB, and PER). Females from actively venting habitats also had greater actual fecundity than those from senescent habitats. While the gametogenic pattern of L. fucensis appears phylogenetically constrained, selection of actively venting habitats by L. fucensis maximizes its reproductive output. The multiple feeding strategies of L. fucensis may allow for a constant supply of energy to be allocated to reproduction in any habitat except senescent vents. Early maturity, high fecundity, and continuous production of gametes suggest a reproductive strategy characteristic of an opportunistic species, and may be contributing to the extremely abundant populations of L. fucensis observed in the Northeast Pacific vent ecosystem.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer-Verlag</pub><doi>10.1007/s00227-006-0505-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-3162
ispartof Marine biology, 2007-04, Vol.151 (2), p.649-662
issn 0025-3162
1432-1793
language eng
recordid cdi_proquest_miscellaneous_19643917
source SpringerNature Journals
subjects Animal and plant ecology
Animal populations
Animal reproduction
Animal, plant and microbial ecology
Aquatic ecosystems
Biological and medical sciences
Deep sea
early development
ecosystems
energy
Fecundity
feeding methods
Females
Fluid flow
Fundamental and applied biological sciences. Psychology
gametogenesis
Gonads
habitat preferences
Habitat selection
Habitats
Lepetodrilus fucensis
males
Marine
Marine biology
Mollusca
Mollusks
oocytes
Particular ecosystems
phylogeny
physicochemical properties
reproductive performance
Sea water ecosystems
Synecology
temperature
tube worms
Vetigastropoda
vigor
title Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20habitat%20on%20the%20reproductive%20biology%20of%20the%20deep-sea%20hydrothermal%20vent%20limpet%20Lepetodrilus%20fucensis%20(Vetigastropoda:%20Mollusca)%20from%20the%20Northeast%20Pacific&rft.jtitle=Marine%20biology&rft.au=Kelly,%20Noreen%20E&rft.date=2007-04-01&rft.volume=151&rft.issue=2&rft.spage=649&rft.epage=662&rft.pages=649-662&rft.issn=0025-3162&rft.eissn=1432-1793&rft.coden=MBIOAJ&rft_id=info:doi/10.1007/s00227-006-0505-z&rft_dat=%3Cproquest_cross%3E1241503511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208065556&rft_id=info:pmid/&rfr_iscdi=true