Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention

Poly­(2-meth­acryl­oyl­oxy­ethyl phos­phoryl­choline) (pMPC), when end-tethered to surfaces by the adsorption of copolymeric cationic segments, forms adsorbed layers that substantially reduce protein adsorption. This study examined variations in the molecular architecture of copolymers containing ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-11, Vol.33 (47), p.13708-13717
Hauptverfasser: Kalasin, S, Letteri, R. A, Emrick, T, Santore, M. M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13717
container_issue 47
container_start_page 13708
container_title Langmuir
container_volume 33
creator Kalasin, S
Letteri, R. A
Emrick, T
Santore, M. M
description Poly­(2-meth­acryl­oyl­oxy­ethyl phos­phoryl­choline) (pMPC), when end-tethered to surfaces by the adsorption of copolymeric cationic segments, forms adsorbed layers that substantially reduce protein adsorption. This study examined variations in the molecular architecture of copolymers containing cationic poly­(tri­methyl­am­monium ethyl meth­acrylate (pTMAEMA) anchor blocks that adsorbed strongly to negative surfaces. With appropriate copolymer design, the pTMAEMA blocks were shielded, by pMPC tethers, from solution-phase proteins. The most protein-resistant copolymer layers, eliminating fibrinogen and lysozyme adsorption within detectible limits of 0.01 mg/m2, had metrics (the amount of pMPC at the surface and the reduced tether footprint) consistent with the formation of an interfacial polymer brush. The p­(TMAEMA-b-MPC) copolymer layers substantially outperformed the protein resistance of surface-polymerized pMPC layers when compared on a per-polyzwitterion-mass basis or on the basis of the scaled tether area. Additionally, p­(TMAEMA-b-MPC) copolymer layers offered advantages over the much-studied cationically anchored poly­(ethylene glycol) (PEG) graft copolymer system, which forms PEG brushes by the adsorption of a poly l-lysine (PLL) backbone. Although the optimized p­(TMAEMA-b-MPC) and PLL-PEG copolymers were similarly fibrinogen-resistant, the cationic protein lysozyme was repelled by pMPC but adhered to the PEG brush via PEG–lysozyme attractions. Additionally, the adsorbed p­(TMAEMA-b-MPC) copolymers were not displaced by poly l-lysine homopolymers, which completely displaced the PLL-PEG copolymer to expose a protein-adhesive surface. Thus, the p­(TMAEMA-b-MPC) copolymer system comprises a scalable means to produce protein-repellent surfaces, free of the complexities of surface-initiated polymerization and with the advantages of polyzwitterions.
doi_str_mv 10.1021/acs.langmuir.7b03391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1964272410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1964272410</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-75cdc10d5fdb98302e1812d882636bb84571e3e11f500a2d9f97035664d91db43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl7eQKRLNx3PSdJLljJeYUARXZe0OZVKm4xJi4xPb2RmXLoKJN__55yPsXOEOQLHK92Eea_t-zB1fl7UIITCPTbDjEOalbzYZzMopEgLmYsjdhzCBwAoIdUhO-IKhSwBZ6y-NsH5mkzy7Pr191c3juQ7Z5OFW8WLgXyy1GvyIbmh0L3bCLbOJ8_ejdTZ5IVW1Pdkm3WirUkebUy3uul0H59GsmOsOmUHre4DnW3PE_Z2d_u6eEiXT_ePi-tlquMsY1pkjWkQTNaaWpUCOGGJ3JQlz0Ve16XMCiRBiG0GoLlRrSpAZHkujUJTS3HCLje9K-8-JwpjNXShieNpS24KFapc8oJLhIjKDdp4F4Kntlr5btB-XSFUv3araLfa2a22dmPsYvvDVA9k_kI7nRGADfAb_3CTt3Hh_zt_AD_Qiqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964272410</pqid></control><display><type>article</type><title>Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention</title><source>American Chemical Society Journals</source><creator>Kalasin, S ; Letteri, R. A ; Emrick, T ; Santore, M. M</creator><creatorcontrib>Kalasin, S ; Letteri, R. A ; Emrick, T ; Santore, M. M</creatorcontrib><description>Poly­(2-meth­acryl­oyl­oxy­ethyl phos­phoryl­choline) (pMPC), when end-tethered to surfaces by the adsorption of copolymeric cationic segments, forms adsorbed layers that substantially reduce protein adsorption. This study examined variations in the molecular architecture of copolymers containing cationic poly­(tri­methyl­am­monium ethyl meth­acrylate (pTMAEMA) anchor blocks that adsorbed strongly to negative surfaces. With appropriate copolymer design, the pTMAEMA blocks were shielded, by pMPC tethers, from solution-phase proteins. The most protein-resistant copolymer layers, eliminating fibrinogen and lysozyme adsorption within detectible limits of 0.01 mg/m2, had metrics (the amount of pMPC at the surface and the reduced tether footprint) consistent with the formation of an interfacial polymer brush. The p­(TMAEMA-b-MPC) copolymer layers substantially outperformed the protein resistance of surface-polymerized pMPC layers when compared on a per-polyzwitterion-mass basis or on the basis of the scaled tether area. Additionally, p­(TMAEMA-b-MPC) copolymer layers offered advantages over the much-studied cationically anchored poly­(ethylene glycol) (PEG) graft copolymer system, which forms PEG brushes by the adsorption of a poly l-lysine (PLL) backbone. Although the optimized p­(TMAEMA-b-MPC) and PLL-PEG copolymers were similarly fibrinogen-resistant, the cationic protein lysozyme was repelled by pMPC but adhered to the PEG brush via PEG–lysozyme attractions. Additionally, the adsorbed p­(TMAEMA-b-MPC) copolymers were not displaced by poly l-lysine homopolymers, which completely displaced the PLL-PEG copolymer to expose a protein-adhesive surface. Thus, the p­(TMAEMA-b-MPC) copolymer system comprises a scalable means to produce protein-repellent surfaces, free of the complexities of surface-initiated polymerization and with the advantages of polyzwitterions.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.7b03391</identifier><identifier>PMID: 29134801</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-11, Vol.33 (47), p.13708-13717</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-75cdc10d5fdb98302e1812d882636bb84571e3e11f500a2d9f97035664d91db43</citedby><cites>FETCH-LOGICAL-a348t-75cdc10d5fdb98302e1812d882636bb84571e3e11f500a2d9f97035664d91db43</cites><orcidid>0000-0003-0460-1797 ; 0000-0003-3689-5064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.7b03391$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.7b03391$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29134801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalasin, S</creatorcontrib><creatorcontrib>Letteri, R. A</creatorcontrib><creatorcontrib>Emrick, T</creatorcontrib><creatorcontrib>Santore, M. M</creatorcontrib><title>Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Poly­(2-meth­acryl­oyl­oxy­ethyl phos­phoryl­choline) (pMPC), when end-tethered to surfaces by the adsorption of copolymeric cationic segments, forms adsorbed layers that substantially reduce protein adsorption. This study examined variations in the molecular architecture of copolymers containing cationic poly­(tri­methyl­am­monium ethyl meth­acrylate (pTMAEMA) anchor blocks that adsorbed strongly to negative surfaces. With appropriate copolymer design, the pTMAEMA blocks were shielded, by pMPC tethers, from solution-phase proteins. The most protein-resistant copolymer layers, eliminating fibrinogen and lysozyme adsorption within detectible limits of 0.01 mg/m2, had metrics (the amount of pMPC at the surface and the reduced tether footprint) consistent with the formation of an interfacial polymer brush. The p­(TMAEMA-b-MPC) copolymer layers substantially outperformed the protein resistance of surface-polymerized pMPC layers when compared on a per-polyzwitterion-mass basis or on the basis of the scaled tether area. Additionally, p­(TMAEMA-b-MPC) copolymer layers offered advantages over the much-studied cationically anchored poly­(ethylene glycol) (PEG) graft copolymer system, which forms PEG brushes by the adsorption of a poly l-lysine (PLL) backbone. Although the optimized p­(TMAEMA-b-MPC) and PLL-PEG copolymers were similarly fibrinogen-resistant, the cationic protein lysozyme was repelled by pMPC but adhered to the PEG brush via PEG–lysozyme attractions. Additionally, the adsorbed p­(TMAEMA-b-MPC) copolymers were not displaced by poly l-lysine homopolymers, which completely displaced the PLL-PEG copolymer to expose a protein-adhesive surface. Thus, the p­(TMAEMA-b-MPC) copolymer system comprises a scalable means to produce protein-repellent surfaces, free of the complexities of surface-initiated polymerization and with the advantages of polyzwitterions.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl7eQKRLNx3PSdJLljJeYUARXZe0OZVKm4xJi4xPb2RmXLoKJN__55yPsXOEOQLHK92Eea_t-zB1fl7UIITCPTbDjEOalbzYZzMopEgLmYsjdhzCBwAoIdUhO-IKhSwBZ6y-NsH5mkzy7Pr191c3juQ7Z5OFW8WLgXyy1GvyIbmh0L3bCLbOJ8_ejdTZ5IVW1Pdkm3WirUkebUy3uul0H59GsmOsOmUHre4DnW3PE_Z2d_u6eEiXT_ePi-tlquMsY1pkjWkQTNaaWpUCOGGJ3JQlz0Ve16XMCiRBiG0GoLlRrSpAZHkujUJTS3HCLje9K-8-JwpjNXShieNpS24KFapc8oJLhIjKDdp4F4Kntlr5btB-XSFUv3araLfa2a22dmPsYvvDVA9k_kI7nRGADfAb_3CTt3Hh_zt_AD_Qiqg</recordid><startdate>20171128</startdate><enddate>20171128</enddate><creator>Kalasin, S</creator><creator>Letteri, R. A</creator><creator>Emrick, T</creator><creator>Santore, M. M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0460-1797</orcidid><orcidid>https://orcid.org/0000-0003-3689-5064</orcidid></search><sort><creationdate>20171128</creationdate><title>Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention</title><author>Kalasin, S ; Letteri, R. A ; Emrick, T ; Santore, M. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-75cdc10d5fdb98302e1812d882636bb84571e3e11f500a2d9f97035664d91db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalasin, S</creatorcontrib><creatorcontrib>Letteri, R. A</creatorcontrib><creatorcontrib>Emrick, T</creatorcontrib><creatorcontrib>Santore, M. M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalasin, S</au><au>Letteri, R. A</au><au>Emrick, T</au><au>Santore, M. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-11-28</date><risdate>2017</risdate><volume>33</volume><issue>47</issue><spage>13708</spage><epage>13717</epage><pages>13708-13717</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Poly­(2-meth­acryl­oyl­oxy­ethyl phos­phoryl­choline) (pMPC), when end-tethered to surfaces by the adsorption of copolymeric cationic segments, forms adsorbed layers that substantially reduce protein adsorption. This study examined variations in the molecular architecture of copolymers containing cationic poly­(tri­methyl­am­monium ethyl meth­acrylate (pTMAEMA) anchor blocks that adsorbed strongly to negative surfaces. With appropriate copolymer design, the pTMAEMA blocks were shielded, by pMPC tethers, from solution-phase proteins. The most protein-resistant copolymer layers, eliminating fibrinogen and lysozyme adsorption within detectible limits of 0.01 mg/m2, had metrics (the amount of pMPC at the surface and the reduced tether footprint) consistent with the formation of an interfacial polymer brush. The p­(TMAEMA-b-MPC) copolymer layers substantially outperformed the protein resistance of surface-polymerized pMPC layers when compared on a per-polyzwitterion-mass basis or on the basis of the scaled tether area. Additionally, p­(TMAEMA-b-MPC) copolymer layers offered advantages over the much-studied cationically anchored poly­(ethylene glycol) (PEG) graft copolymer system, which forms PEG brushes by the adsorption of a poly l-lysine (PLL) backbone. Although the optimized p­(TMAEMA-b-MPC) and PLL-PEG copolymers were similarly fibrinogen-resistant, the cationic protein lysozyme was repelled by pMPC but adhered to the PEG brush via PEG–lysozyme attractions. Additionally, the adsorbed p­(TMAEMA-b-MPC) copolymers were not displaced by poly l-lysine homopolymers, which completely displaced the PLL-PEG copolymer to expose a protein-adhesive surface. Thus, the p­(TMAEMA-b-MPC) copolymer system comprises a scalable means to produce protein-repellent surfaces, free of the complexities of surface-initiated polymerization and with the advantages of polyzwitterions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29134801</pmid><doi>10.1021/acs.langmuir.7b03391</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0460-1797</orcidid><orcidid>https://orcid.org/0000-0003-3689-5064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-11, Vol.33 (47), p.13708-13717
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1964272410
source American Chemical Society Journals
title Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorbed%20Polyzwitterion%20Copolymer%20Layers%20Designed%20for%20Protein%20Repellency%20and%20Interfacial%20Retention&rft.jtitle=Langmuir&rft.au=Kalasin,%20S&rft.date=2017-11-28&rft.volume=33&rft.issue=47&rft.spage=13708&rft.epage=13717&rft.pages=13708-13717&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.7b03391&rft_dat=%3Cproquest_cross%3E1964272410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964272410&rft_id=info:pmid/29134801&rfr_iscdi=true