Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system

We assessed the impact of long-term manuring and fertilization on changes in different SOC fractions over ten years period (1994–2003) in a Typic Haplustept under intensive cropping with maize ( Zea mays L.) — wheat ( Triticum aestivum L.) — cowpea ( Vigna unguiculata) in semi-arid, sub-tropical Ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoderma 2008-03, Vol.144 (1), p.370-378
Hauptverfasser: Purakayastha, T.J., Rudrappa, L., Singh, D., Swarup, A., Bhadraray, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 1
container_start_page 370
container_title Geoderma
container_volume 144
creator Purakayastha, T.J.
Rudrappa, L.
Singh, D.
Swarup, A.
Bhadraray, S.
description We assessed the impact of long-term manuring and fertilization on changes in different SOC fractions over ten years period (1994–2003) in a Typic Haplustept under intensive cropping with maize ( Zea mays L.) — wheat ( Triticum aestivum L.) — cowpea ( Vigna unguiculata) in semi-arid, sub-tropical India. The application of graded doses of NPK from 50% (130 kg N, 35 kg P and 41.5 kg K ha − 1 ) to 150% (390 kg N, 105 kg P and 124 kg K ha − 1 ) in the cropping system significantly enhanced SOC, particulate organic C (POC) and KMnO 4 oxidizable C (KMnO 4–C) fractions in soil. The increase in these C fractions was greater when farmyard manure (FYM) was applied conjointly with 100% NPK (260 kg N, 70 kg P and 83 kg K ha − 1 ). This treatment showed highest amount of SOC (58.3 Mg C ha − 1 in 1994 and 72.1 Mg C ha − 1 in 2003), POC (5.30 Mg C ha − 1 in 1994 and 6.33 Mg C ha − 1 in 2003) and KMnO 4-C (10.05 Mg C ha − 1 in 1994 and 11.2 Mg C ha − 1 in 2003) in 0–45 cm soil depth. The C sequestration rate in SOC calculated over ten year period (1994–2003) was highest with 100% NPK + FYM (997 kg C ha − 1  yr − 1 ) followed by the 150% NPK (553 kg C ha − 1  yr − 1 ). It was estimated that 17.1 to 34.0% of the gross C input over ten year period contributed towards the increase in SOC content, while C sequestration efficiency (CSE) in POC (varied between 1.28 and 2.58%) was lower than KMnO 4-C (varied between 1.42 and 3.72%). The CSE was highest in 150% NPK treatment, while 100% NPK + FYM showed the lowest CSE. By applying the values of humification constant ( h) and decay constant ( k) in Jenkinson's equation, it is possible to predict SOC level in the year 2003 and the C inputs required to maintain the SOC level in the year 1994 ( A E) were calculated from Jenkinson's equation. The low k value in native SOC was responsible for lower requirements of C input required to maintain SOC in equilibrium. Thus increase in SOC concentration under long-term maize–wheat–cowpea cropping was due to the fact that annual C input by the system was higher than A E. In semi-arid sub-tropical India, continuous adoption of 100% NPK + FYM treatment in maize–wheat–cowpea cropping system might sequester 1.83 Tg C yr − 1 which corresponds to about 1% of the fossil fuel emissions by India.
doi_str_mv 10.1016/j.geoderma.2007.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19634423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706107003588</els_id><sourcerecordid>19634423</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-103dc734724bafb6f1d74b0c29addc98252ced9bc40a9ff32caba02ea6355ec43</originalsourceid><addsrcrecordid>eNqFkE2O1DAQhS0EEs3AFZA3sEsoO4nT2YFG_EktsYG1VXHKjVuJHVwZRsMCcQduyEnw0ANbVk8ufc_16gnxVEGtQJkXp_pIaaK8YK0B-lrpGsDcEzu173VldDfcFzsoZNWDUQ_FI-ZTefagYSe-H1I8Vltxy7Cs6DaZvPSUtzCHb5RZpig5hVmmfMQYnHSYxzJbU5pZYpwk05cr4i3jFsq8CLEMUS5Y_L9-_Lz-TLgVdel6JZQup3UN8Sj5hjdaHosHHmemJ3d6IT69ef3x8l11-PD2_eWrQ4XNYLZKQTO5vml73Y7oR-PV1LcjOD3gNLlhrzvtaBpG1wIO3jfa4YigCU3TdeTa5kI8P_-75vQnrl0CO5pnjJSu2KrBNG2rmwKaM1iCMmfyds1hwXxjFdjbuu3J_q3b3tZtlbal7mJ8drcB2eHsM0YX-J9bg-r2LUDhXp45Kud-DZQtu0CxxA-Z3GanFP636jeb-Z9B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19634423</pqid></control><display><type>article</type><title>Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Purakayastha, T.J. ; Rudrappa, L. ; Singh, D. ; Swarup, A. ; Bhadraray, S.</creator><creatorcontrib>Purakayastha, T.J. ; Rudrappa, L. ; Singh, D. ; Swarup, A. ; Bhadraray, S.</creatorcontrib><description>We assessed the impact of long-term manuring and fertilization on changes in different SOC fractions over ten years period (1994–2003) in a Typic Haplustept under intensive cropping with maize ( Zea mays L.) — wheat ( Triticum aestivum L.) — cowpea ( Vigna unguiculata) in semi-arid, sub-tropical India. The application of graded doses of NPK from 50% (130 kg N, 35 kg P and 41.5 kg K ha − 1 ) to 150% (390 kg N, 105 kg P and 124 kg K ha − 1 ) in the cropping system significantly enhanced SOC, particulate organic C (POC) and KMnO 4 oxidizable C (KMnO 4–C) fractions in soil. The increase in these C fractions was greater when farmyard manure (FYM) was applied conjointly with 100% NPK (260 kg N, 70 kg P and 83 kg K ha − 1 ). This treatment showed highest amount of SOC (58.3 Mg C ha − 1 in 1994 and 72.1 Mg C ha − 1 in 2003), POC (5.30 Mg C ha − 1 in 1994 and 6.33 Mg C ha − 1 in 2003) and KMnO 4-C (10.05 Mg C ha − 1 in 1994 and 11.2 Mg C ha − 1 in 2003) in 0–45 cm soil depth. The C sequestration rate in SOC calculated over ten year period (1994–2003) was highest with 100% NPK + FYM (997 kg C ha − 1  yr − 1 ) followed by the 150% NPK (553 kg C ha − 1  yr − 1 ). It was estimated that 17.1 to 34.0% of the gross C input over ten year period contributed towards the increase in SOC content, while C sequestration efficiency (CSE) in POC (varied between 1.28 and 2.58%) was lower than KMnO 4-C (varied between 1.42 and 3.72%). The CSE was highest in 150% NPK treatment, while 100% NPK + FYM showed the lowest CSE. By applying the values of humification constant ( h) and decay constant ( k) in Jenkinson's equation, it is possible to predict SOC level in the year 2003 and the C inputs required to maintain the SOC level in the year 1994 ( A E) were calculated from Jenkinson's equation. The low k value in native SOC was responsible for lower requirements of C input required to maintain SOC in equilibrium. Thus increase in SOC concentration under long-term maize–wheat–cowpea cropping was due to the fact that annual C input by the system was higher than A E. In semi-arid sub-tropical India, continuous adoption of 100% NPK + FYM treatment in maize–wheat–cowpea cropping system might sequester 1.83 Tg C yr − 1 which corresponds to about 1% of the fossil fuel emissions by India.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2007.12.006</identifier><identifier>CODEN: GEDMAB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agronomy. Soil science and plant productions ; Biological and medical sciences ; Carbon sequestration ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Farmyard manure ; Fundamental and applied biological sciences. Psychology ; Geochemistry ; Long-term fertilizer experiment ; Microbial biomass C, NPK fertilizer ; Particulate organic C ; Root biomass ; Soil and rock geochemistry ; Soil organic C ; Soils ; Surficial geology ; Triticum aestivum ; Vigna unguiculata ; Zea mays</subject><ispartof>Geoderma, 2008-03, Vol.144 (1), p.370-378</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-103dc734724bafb6f1d74b0c29addc98252ced9bc40a9ff32caba02ea6355ec43</citedby><cites>FETCH-LOGICAL-a396t-103dc734724bafb6f1d74b0c29addc98252ced9bc40a9ff32caba02ea6355ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geoderma.2007.12.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20158400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Purakayastha, T.J.</creatorcontrib><creatorcontrib>Rudrappa, L.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Swarup, A.</creatorcontrib><creatorcontrib>Bhadraray, S.</creatorcontrib><title>Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system</title><title>Geoderma</title><description>We assessed the impact of long-term manuring and fertilization on changes in different SOC fractions over ten years period (1994–2003) in a Typic Haplustept under intensive cropping with maize ( Zea mays L.) — wheat ( Triticum aestivum L.) — cowpea ( Vigna unguiculata) in semi-arid, sub-tropical India. The application of graded doses of NPK from 50% (130 kg N, 35 kg P and 41.5 kg K ha − 1 ) to 150% (390 kg N, 105 kg P and 124 kg K ha − 1 ) in the cropping system significantly enhanced SOC, particulate organic C (POC) and KMnO 4 oxidizable C (KMnO 4–C) fractions in soil. The increase in these C fractions was greater when farmyard manure (FYM) was applied conjointly with 100% NPK (260 kg N, 70 kg P and 83 kg K ha − 1 ). This treatment showed highest amount of SOC (58.3 Mg C ha − 1 in 1994 and 72.1 Mg C ha − 1 in 2003), POC (5.30 Mg C ha − 1 in 1994 and 6.33 Mg C ha − 1 in 2003) and KMnO 4-C (10.05 Mg C ha − 1 in 1994 and 11.2 Mg C ha − 1 in 2003) in 0–45 cm soil depth. The C sequestration rate in SOC calculated over ten year period (1994–2003) was highest with 100% NPK + FYM (997 kg C ha − 1  yr − 1 ) followed by the 150% NPK (553 kg C ha − 1  yr − 1 ). It was estimated that 17.1 to 34.0% of the gross C input over ten year period contributed towards the increase in SOC content, while C sequestration efficiency (CSE) in POC (varied between 1.28 and 2.58%) was lower than KMnO 4-C (varied between 1.42 and 3.72%). The CSE was highest in 150% NPK treatment, while 100% NPK + FYM showed the lowest CSE. By applying the values of humification constant ( h) and decay constant ( k) in Jenkinson's equation, it is possible to predict SOC level in the year 2003 and the C inputs required to maintain the SOC level in the year 1994 ( A E) were calculated from Jenkinson's equation. The low k value in native SOC was responsible for lower requirements of C input required to maintain SOC in equilibrium. Thus increase in SOC concentration under long-term maize–wheat–cowpea cropping was due to the fact that annual C input by the system was higher than A E. In semi-arid sub-tropical India, continuous adoption of 100% NPK + FYM treatment in maize–wheat–cowpea cropping system might sequester 1.83 Tg C yr − 1 which corresponds to about 1% of the fossil fuel emissions by India.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Carbon sequestration</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Farmyard manure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geochemistry</subject><subject>Long-term fertilizer experiment</subject><subject>Microbial biomass C, NPK fertilizer</subject><subject>Particulate organic C</subject><subject>Root biomass</subject><subject>Soil and rock geochemistry</subject><subject>Soil organic C</subject><subject>Soils</subject><subject>Surficial geology</subject><subject>Triticum aestivum</subject><subject>Vigna unguiculata</subject><subject>Zea mays</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE2O1DAQhS0EEs3AFZA3sEsoO4nT2YFG_EktsYG1VXHKjVuJHVwZRsMCcQduyEnw0ANbVk8ufc_16gnxVEGtQJkXp_pIaaK8YK0B-lrpGsDcEzu173VldDfcFzsoZNWDUQ_FI-ZTefagYSe-H1I8Vltxy7Cs6DaZvPSUtzCHb5RZpig5hVmmfMQYnHSYxzJbU5pZYpwk05cr4i3jFsq8CLEMUS5Y_L9-_Lz-TLgVdel6JZQup3UN8Sj5hjdaHosHHmemJ3d6IT69ef3x8l11-PD2_eWrQ4XNYLZKQTO5vml73Y7oR-PV1LcjOD3gNLlhrzvtaBpG1wIO3jfa4YigCU3TdeTa5kI8P_-75vQnrl0CO5pnjJSu2KrBNG2rmwKaM1iCMmfyds1hwXxjFdjbuu3J_q3b3tZtlbal7mJ8drcB2eHsM0YX-J9bg-r2LUDhXp45Kud-DZQtu0CxxA-Z3GanFP636jeb-Z9B</recordid><startdate>20080315</startdate><enddate>20080315</enddate><creator>Purakayastha, T.J.</creator><creator>Rudrappa, L.</creator><creator>Singh, D.</creator><creator>Swarup, A.</creator><creator>Bhadraray, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H98</scope><scope>L.G</scope></search><sort><creationdate>20080315</creationdate><title>Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system</title><author>Purakayastha, T.J. ; Rudrappa, L. ; Singh, D. ; Swarup, A. ; Bhadraray, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-103dc734724bafb6f1d74b0c29addc98252ced9bc40a9ff32caba02ea6355ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Carbon sequestration</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Farmyard manure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geochemistry</topic><topic>Long-term fertilizer experiment</topic><topic>Microbial biomass C, NPK fertilizer</topic><topic>Particulate organic C</topic><topic>Root biomass</topic><topic>Soil and rock geochemistry</topic><topic>Soil organic C</topic><topic>Soils</topic><topic>Surficial geology</topic><topic>Triticum aestivum</topic><topic>Vigna unguiculata</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purakayastha, T.J.</creatorcontrib><creatorcontrib>Rudrappa, L.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Swarup, A.</creatorcontrib><creatorcontrib>Bhadraray, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purakayastha, T.J.</au><au>Rudrappa, L.</au><au>Singh, D.</au><au>Swarup, A.</au><au>Bhadraray, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system</atitle><jtitle>Geoderma</jtitle><date>2008-03-15</date><risdate>2008</risdate><volume>144</volume><issue>1</issue><spage>370</spage><epage>378</epage><pages>370-378</pages><issn>0016-7061</issn><eissn>1872-6259</eissn><coden>GEDMAB</coden><abstract>We assessed the impact of long-term manuring and fertilization on changes in different SOC fractions over ten years period (1994–2003) in a Typic Haplustept under intensive cropping with maize ( Zea mays L.) — wheat ( Triticum aestivum L.) — cowpea ( Vigna unguiculata) in semi-arid, sub-tropical India. The application of graded doses of NPK from 50% (130 kg N, 35 kg P and 41.5 kg K ha − 1 ) to 150% (390 kg N, 105 kg P and 124 kg K ha − 1 ) in the cropping system significantly enhanced SOC, particulate organic C (POC) and KMnO 4 oxidizable C (KMnO 4–C) fractions in soil. The increase in these C fractions was greater when farmyard manure (FYM) was applied conjointly with 100% NPK (260 kg N, 70 kg P and 83 kg K ha − 1 ). This treatment showed highest amount of SOC (58.3 Mg C ha − 1 in 1994 and 72.1 Mg C ha − 1 in 2003), POC (5.30 Mg C ha − 1 in 1994 and 6.33 Mg C ha − 1 in 2003) and KMnO 4-C (10.05 Mg C ha − 1 in 1994 and 11.2 Mg C ha − 1 in 2003) in 0–45 cm soil depth. The C sequestration rate in SOC calculated over ten year period (1994–2003) was highest with 100% NPK + FYM (997 kg C ha − 1  yr − 1 ) followed by the 150% NPK (553 kg C ha − 1  yr − 1 ). It was estimated that 17.1 to 34.0% of the gross C input over ten year period contributed towards the increase in SOC content, while C sequestration efficiency (CSE) in POC (varied between 1.28 and 2.58%) was lower than KMnO 4-C (varied between 1.42 and 3.72%). The CSE was highest in 150% NPK treatment, while 100% NPK + FYM showed the lowest CSE. By applying the values of humification constant ( h) and decay constant ( k) in Jenkinson's equation, it is possible to predict SOC level in the year 2003 and the C inputs required to maintain the SOC level in the year 1994 ( A E) were calculated from Jenkinson's equation. The low k value in native SOC was responsible for lower requirements of C input required to maintain SOC in equilibrium. Thus increase in SOC concentration under long-term maize–wheat–cowpea cropping was due to the fact that annual C input by the system was higher than A E. In semi-arid sub-tropical India, continuous adoption of 100% NPK + FYM treatment in maize–wheat–cowpea cropping system might sequester 1.83 Tg C yr − 1 which corresponds to about 1% of the fossil fuel emissions by India.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2007.12.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7061
ispartof Geoderma, 2008-03, Vol.144 (1), p.370-378
issn 0016-7061
1872-6259
language eng
recordid cdi_proquest_miscellaneous_19634423
source Access via ScienceDirect (Elsevier)
subjects Agronomy. Soil science and plant productions
Biological and medical sciences
Carbon sequestration
Earth sciences
Earth, ocean, space
Exact sciences and technology
Farmyard manure
Fundamental and applied biological sciences. Psychology
Geochemistry
Long-term fertilizer experiment
Microbial biomass C, NPK fertilizer
Particulate organic C
Root biomass
Soil and rock geochemistry
Soil organic C
Soils
Surficial geology
Triticum aestivum
Vigna unguiculata
Zea mays
title Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20impact%20of%20fertilizers%20on%20soil%20organic%20carbon%20pools%20and%20sequestration%20rates%20in%20maize%E2%80%93wheat%E2%80%93cowpea%20cropping%20system&rft.jtitle=Geoderma&rft.au=Purakayastha,%20T.J.&rft.date=2008-03-15&rft.volume=144&rft.issue=1&rft.spage=370&rft.epage=378&rft.pages=370-378&rft.issn=0016-7061&rft.eissn=1872-6259&rft.coden=GEDMAB&rft_id=info:doi/10.1016/j.geoderma.2007.12.006&rft_dat=%3Cproquest_cross%3E19634423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19634423&rft_id=info:pmid/&rft_els_id=S0016706107003588&rfr_iscdi=true