An estimate of the percentage of non-predatory dead variability in coastal zooplankton of the southern Humboldt Current System

Non-predatory dead variability in zooplankton remains poorly quantified worldwide. Here, we make the first estimation of the percentage of dead organisms in coastal zooplankton communities in the Humboldt Current System (HCS) under in situ conditions. The study was conducted in four coastal sites of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine environmental research 2017-12, Vol.132, p.103-116
Hauptverfasser: Krautz, M.C., Hernández-Miranda, E., Veas, R., Bocaz, P., Riquelme, P., Quiñones, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 103
container_title Marine environmental research
container_volume 132
creator Krautz, M.C.
Hernández-Miranda, E.
Veas, R.
Bocaz, P.
Riquelme, P.
Quiñones, R.A.
description Non-predatory dead variability in zooplankton remains poorly quantified worldwide. Here, we make the first estimation of the percentage of dead organisms in coastal zooplankton communities in the Humboldt Current System (HCS) under in situ conditions. The study was conducted in four coastal sites of the southern HCS (between 36 and 37°S) over a period of one year. Percentages of dead organisms were based on the classification as live or dead of 158,220 holoplankton and 17,591 meroplankton individuals using neutral red staining technique. The percentage of dead organisms in total-zooplankton was between 4.3% in Coronel Bay (summer) and 76.9% in Llico (autumn). The percentage of dead total-holoplankton varied from 4.2% (Itata River Mouth; autumn) to 77.6% (Llico; autumn), while the percentage of dead total-meroplankton ranged from 1.5% to 56.8% in Coronel Bay and Coliumo Bay, respectively. The most abundant taxa analyzed were the copepods Acartia sp., Paracalanus sp., Calanoides sp., Cladocera, Polychaeta, and the eggs of anchoveta Engraulis ringens. Among these taxa, there was a high degree of interspecific variability in the estimation of the dead organisms. The Pearson correlation shows significant relationships between maximum temperature, and minimum salinity, with the percentage of dead individuals of Acartia sp. and Paracalanus sp. Environmental factors explaining those relationships were: the El Niño 2015–2016 event, and freshwater river runoff. The use of vital staining to estimate non-predatory death for total-zooplankton and selected sentinel species is a promising tool to establish baselines to evaluate natural perturbations (e.g. ENSO), and anthropogenic alterations in coastal pelagic ecosystems. •Percentage of dead organisms of coastal zooplankton in the Humboldt Current System was estimated.•Percentage of dead organisms in total zooplankton community was between 4.3% and 76.9%.•High temperature and low salinity were correlated to the percentage of dead individuals. of Acartia sp. and Paracalanus sp.•El Niño 2015–2016 event and river runoff, could explain these associations.•Vital staining of zooplankton is a useful tool to evaluate perturbations in coastal ecosystems.
doi_str_mv 10.1016/j.marenvres.2017.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1963270863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141113617306244</els_id><sourcerecordid>1987704989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-c293ebfe7c3e3b9765b3687599e13c29ae688e0fa54e2749f4e0180afbc9f7183</originalsourceid><addsrcrecordid>eNqFkTGP1DAQhS0E4paDvwCWaGiy2HES2-VqBRzSSRRAbTnOBLwkdrCdlZaC384se3cFDdVI8755Hs8j5BVnW8549_awnW2CcEyQtzXjErtbxtQjsuFK6orVmj8mG8YbXnEuuivyLOcDY6yVvH1KrlCuu07UG_J7Fyjk4mdbgMaRlu9AF0gOQrHf_nZCDNWSYLAlphMdwA70aJO3vZ98OVEfqIs2FzvRXzEukw0_Sgz3VjmuWFKgN-vcx2kodL8mXLzQz6dcYH5Onox2yvDirl6Tr-_ffdnfVLefPnzc724rJ7Qulau1gH4E6QSIXsuu7UWnZKs1cIGihU4pYKNtG6hlo8cGGFfMjr3To-RKXJM3F98lxZ8rftjMPjuYcF2IazZc4zUkU51A9PU_6CGuKeB2SCkpWaOVRkpeKJdizglGsyQ8YjoZzsw5InMwDxGZc0RnASPCyZd3_ms_w_Awd58JArsLAHiQo4dksvMQHAw-gStmiP6_j_wBLQeouA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987704989</pqid></control><display><type>article</type><title>An estimate of the percentage of non-predatory dead variability in coastal zooplankton of the southern Humboldt Current System</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Krautz, M.C. ; Hernández-Miranda, E. ; Veas, R. ; Bocaz, P. ; Riquelme, P. ; Quiñones, R.A.</creator><creatorcontrib>Krautz, M.C. ; Hernández-Miranda, E. ; Veas, R. ; Bocaz, P. ; Riquelme, P. ; Quiñones, R.A.</creatorcontrib><description>Non-predatory dead variability in zooplankton remains poorly quantified worldwide. Here, we make the first estimation of the percentage of dead organisms in coastal zooplankton communities in the Humboldt Current System (HCS) under in situ conditions. The study was conducted in four coastal sites of the southern HCS (between 36 and 37°S) over a period of one year. Percentages of dead organisms were based on the classification as live or dead of 158,220 holoplankton and 17,591 meroplankton individuals using neutral red staining technique. The percentage of dead organisms in total-zooplankton was between 4.3% in Coronel Bay (summer) and 76.9% in Llico (autumn). The percentage of dead total-holoplankton varied from 4.2% (Itata River Mouth; autumn) to 77.6% (Llico; autumn), while the percentage of dead total-meroplankton ranged from 1.5% to 56.8% in Coronel Bay and Coliumo Bay, respectively. The most abundant taxa analyzed were the copepods Acartia sp., Paracalanus sp., Calanoides sp., Cladocera, Polychaeta, and the eggs of anchoveta Engraulis ringens. Among these taxa, there was a high degree of interspecific variability in the estimation of the dead organisms. The Pearson correlation shows significant relationships between maximum temperature, and minimum salinity, with the percentage of dead individuals of Acartia sp. and Paracalanus sp. Environmental factors explaining those relationships were: the El Niño 2015–2016 event, and freshwater river runoff. The use of vital staining to estimate non-predatory death for total-zooplankton and selected sentinel species is a promising tool to establish baselines to evaluate natural perturbations (e.g. ENSO), and anthropogenic alterations in coastal pelagic ecosystems. •Percentage of dead organisms of coastal zooplankton in the Humboldt Current System was estimated.•Percentage of dead organisms in total zooplankton community was between 4.3% and 76.9%.•High temperature and low salinity were correlated to the percentage of dead individuals. of Acartia sp. and Paracalanus sp.•El Niño 2015–2016 event and river runoff, could explain these associations.•Vital staining of zooplankton is a useful tool to evaluate perturbations in coastal ecosystems.</description><identifier>ISSN: 0141-1136</identifier><identifier>EISSN: 1879-0291</identifier><identifier>DOI: 10.1016/j.marenvres.2017.10.008</identifier><identifier>PMID: 29126632</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acartia ; Animals ; Anthropogenic factors ; Aquatic crustaceans ; Autumn ; Biodiversity ; Coasts ; Copepoda ; Dead percentage ; Ecological indicators ; Ecosystem ; Ecosystems ; Eggs ; El Nino ; El Nino phenomena ; ENSO ; Environmental factors ; Environmental Monitoring ; Freshwater ; Holoplankton ; Inland water environment ; Interspecific ; Meroplankton ; Neutral red ; Ocean currents ; Organisms ; Pacific Ocean ; Paracalanus ; Plankton ; Polychaeta ; River discharge ; River flow ; River mouth ; River mouths ; Rivers ; Runoff ; Seawater ; Southern Oscillation ; Staining ; Studies ; Taxa ; Variability ; Water Movements ; Zooplankton ; Zooplankton - physiology</subject><ispartof>Marine environmental research, 2017-12, Vol.132, p.103-116</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-c293ebfe7c3e3b9765b3687599e13c29ae688e0fa54e2749f4e0180afbc9f7183</citedby><cites>FETCH-LOGICAL-c399t-c293ebfe7c3e3b9765b3687599e13c29ae688e0fa54e2749f4e0180afbc9f7183</cites><orcidid>0000-0002-4264-2998 ; 0000-0001-6207-1195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marenvres.2017.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29126632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krautz, M.C.</creatorcontrib><creatorcontrib>Hernández-Miranda, E.</creatorcontrib><creatorcontrib>Veas, R.</creatorcontrib><creatorcontrib>Bocaz, P.</creatorcontrib><creatorcontrib>Riquelme, P.</creatorcontrib><creatorcontrib>Quiñones, R.A.</creatorcontrib><title>An estimate of the percentage of non-predatory dead variability in coastal zooplankton of the southern Humboldt Current System</title><title>Marine environmental research</title><addtitle>Mar Environ Res</addtitle><description>Non-predatory dead variability in zooplankton remains poorly quantified worldwide. Here, we make the first estimation of the percentage of dead organisms in coastal zooplankton communities in the Humboldt Current System (HCS) under in situ conditions. The study was conducted in four coastal sites of the southern HCS (between 36 and 37°S) over a period of one year. Percentages of dead organisms were based on the classification as live or dead of 158,220 holoplankton and 17,591 meroplankton individuals using neutral red staining technique. The percentage of dead organisms in total-zooplankton was between 4.3% in Coronel Bay (summer) and 76.9% in Llico (autumn). The percentage of dead total-holoplankton varied from 4.2% (Itata River Mouth; autumn) to 77.6% (Llico; autumn), while the percentage of dead total-meroplankton ranged from 1.5% to 56.8% in Coronel Bay and Coliumo Bay, respectively. The most abundant taxa analyzed were the copepods Acartia sp., Paracalanus sp., Calanoides sp., Cladocera, Polychaeta, and the eggs of anchoveta Engraulis ringens. Among these taxa, there was a high degree of interspecific variability in the estimation of the dead organisms. The Pearson correlation shows significant relationships between maximum temperature, and minimum salinity, with the percentage of dead individuals of Acartia sp. and Paracalanus sp. Environmental factors explaining those relationships were: the El Niño 2015–2016 event, and freshwater river runoff. The use of vital staining to estimate non-predatory death for total-zooplankton and selected sentinel species is a promising tool to establish baselines to evaluate natural perturbations (e.g. ENSO), and anthropogenic alterations in coastal pelagic ecosystems. •Percentage of dead organisms of coastal zooplankton in the Humboldt Current System was estimated.•Percentage of dead organisms in total zooplankton community was between 4.3% and 76.9%.•High temperature and low salinity were correlated to the percentage of dead individuals. of Acartia sp. and Paracalanus sp.•El Niño 2015–2016 event and river runoff, could explain these associations.•Vital staining of zooplankton is a useful tool to evaluate perturbations in coastal ecosystems.</description><subject>Acartia</subject><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Aquatic crustaceans</subject><subject>Autumn</subject><subject>Biodiversity</subject><subject>Coasts</subject><subject>Copepoda</subject><subject>Dead percentage</subject><subject>Ecological indicators</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Eggs</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>ENSO</subject><subject>Environmental factors</subject><subject>Environmental Monitoring</subject><subject>Freshwater</subject><subject>Holoplankton</subject><subject>Inland water environment</subject><subject>Interspecific</subject><subject>Meroplankton</subject><subject>Neutral red</subject><subject>Ocean currents</subject><subject>Organisms</subject><subject>Pacific Ocean</subject><subject>Paracalanus</subject><subject>Plankton</subject><subject>Polychaeta</subject><subject>River discharge</subject><subject>River flow</subject><subject>River mouth</subject><subject>River mouths</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Seawater</subject><subject>Southern Oscillation</subject><subject>Staining</subject><subject>Studies</subject><subject>Taxa</subject><subject>Variability</subject><subject>Water Movements</subject><subject>Zooplankton</subject><subject>Zooplankton - physiology</subject><issn>0141-1136</issn><issn>1879-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTGP1DAQhS0E4paDvwCWaGiy2HES2-VqBRzSSRRAbTnOBLwkdrCdlZaC384se3cFDdVI8755Hs8j5BVnW8549_awnW2CcEyQtzXjErtbxtQjsuFK6orVmj8mG8YbXnEuuivyLOcDY6yVvH1KrlCuu07UG_J7Fyjk4mdbgMaRlu9AF0gOQrHf_nZCDNWSYLAlphMdwA70aJO3vZ98OVEfqIs2FzvRXzEukw0_Sgz3VjmuWFKgN-vcx2kodL8mXLzQz6dcYH5Onox2yvDirl6Tr-_ffdnfVLefPnzc724rJ7Qulau1gH4E6QSIXsuu7UWnZKs1cIGihU4pYKNtG6hlo8cGGFfMjr3To-RKXJM3F98lxZ8rftjMPjuYcF2IazZc4zUkU51A9PU_6CGuKeB2SCkpWaOVRkpeKJdizglGsyQ8YjoZzsw5InMwDxGZc0RnASPCyZd3_ms_w_Awd58JArsLAHiQo4dksvMQHAw-gStmiP6_j_wBLQeouA</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Krautz, M.C.</creator><creator>Hernández-Miranda, E.</creator><creator>Veas, R.</creator><creator>Bocaz, P.</creator><creator>Riquelme, P.</creator><creator>Quiñones, R.A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T5</scope><scope>7TN</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4264-2998</orcidid><orcidid>https://orcid.org/0000-0001-6207-1195</orcidid></search><sort><creationdate>201712</creationdate><title>An estimate of the percentage of non-predatory dead variability in coastal zooplankton of the southern Humboldt Current System</title><author>Krautz, M.C. ; Hernández-Miranda, E. ; Veas, R. ; Bocaz, P. ; Riquelme, P. ; Quiñones, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-c293ebfe7c3e3b9765b3687599e13c29ae688e0fa54e2749f4e0180afbc9f7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acartia</topic><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Aquatic crustaceans</topic><topic>Autumn</topic><topic>Biodiversity</topic><topic>Coasts</topic><topic>Copepoda</topic><topic>Dead percentage</topic><topic>Ecological indicators</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Eggs</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>ENSO</topic><topic>Environmental factors</topic><topic>Environmental Monitoring</topic><topic>Freshwater</topic><topic>Holoplankton</topic><topic>Inland water environment</topic><topic>Interspecific</topic><topic>Meroplankton</topic><topic>Neutral red</topic><topic>Ocean currents</topic><topic>Organisms</topic><topic>Pacific Ocean</topic><topic>Paracalanus</topic><topic>Plankton</topic><topic>Polychaeta</topic><topic>River discharge</topic><topic>River flow</topic><topic>River mouth</topic><topic>River mouths</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Seawater</topic><topic>Southern Oscillation</topic><topic>Staining</topic><topic>Studies</topic><topic>Taxa</topic><topic>Variability</topic><topic>Water Movements</topic><topic>Zooplankton</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krautz, M.C.</creatorcontrib><creatorcontrib>Hernández-Miranda, E.</creatorcontrib><creatorcontrib>Veas, R.</creatorcontrib><creatorcontrib>Bocaz, P.</creatorcontrib><creatorcontrib>Riquelme, P.</creatorcontrib><creatorcontrib>Quiñones, R.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krautz, M.C.</au><au>Hernández-Miranda, E.</au><au>Veas, R.</au><au>Bocaz, P.</au><au>Riquelme, P.</au><au>Quiñones, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An estimate of the percentage of non-predatory dead variability in coastal zooplankton of the southern Humboldt Current System</atitle><jtitle>Marine environmental research</jtitle><addtitle>Mar Environ Res</addtitle><date>2017-12</date><risdate>2017</risdate><volume>132</volume><spage>103</spage><epage>116</epage><pages>103-116</pages><issn>0141-1136</issn><eissn>1879-0291</eissn><abstract>Non-predatory dead variability in zooplankton remains poorly quantified worldwide. Here, we make the first estimation of the percentage of dead organisms in coastal zooplankton communities in the Humboldt Current System (HCS) under in situ conditions. The study was conducted in four coastal sites of the southern HCS (between 36 and 37°S) over a period of one year. Percentages of dead organisms were based on the classification as live or dead of 158,220 holoplankton and 17,591 meroplankton individuals using neutral red staining technique. The percentage of dead organisms in total-zooplankton was between 4.3% in Coronel Bay (summer) and 76.9% in Llico (autumn). The percentage of dead total-holoplankton varied from 4.2% (Itata River Mouth; autumn) to 77.6% (Llico; autumn), while the percentage of dead total-meroplankton ranged from 1.5% to 56.8% in Coronel Bay and Coliumo Bay, respectively. The most abundant taxa analyzed were the copepods Acartia sp., Paracalanus sp., Calanoides sp., Cladocera, Polychaeta, and the eggs of anchoveta Engraulis ringens. Among these taxa, there was a high degree of interspecific variability in the estimation of the dead organisms. The Pearson correlation shows significant relationships between maximum temperature, and minimum salinity, with the percentage of dead individuals of Acartia sp. and Paracalanus sp. Environmental factors explaining those relationships were: the El Niño 2015–2016 event, and freshwater river runoff. The use of vital staining to estimate non-predatory death for total-zooplankton and selected sentinel species is a promising tool to establish baselines to evaluate natural perturbations (e.g. ENSO), and anthropogenic alterations in coastal pelagic ecosystems. •Percentage of dead organisms of coastal zooplankton in the Humboldt Current System was estimated.•Percentage of dead organisms in total zooplankton community was between 4.3% and 76.9%.•High temperature and low salinity were correlated to the percentage of dead individuals. of Acartia sp. and Paracalanus sp.•El Niño 2015–2016 event and river runoff, could explain these associations.•Vital staining of zooplankton is a useful tool to evaluate perturbations in coastal ecosystems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29126632</pmid><doi>10.1016/j.marenvres.2017.10.008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4264-2998</orcidid><orcidid>https://orcid.org/0000-0001-6207-1195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-1136
ispartof Marine environmental research, 2017-12, Vol.132, p.103-116
issn 0141-1136
1879-0291
language eng
recordid cdi_proquest_miscellaneous_1963270863
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acartia
Animals
Anthropogenic factors
Aquatic crustaceans
Autumn
Biodiversity
Coasts
Copepoda
Dead percentage
Ecological indicators
Ecosystem
Ecosystems
Eggs
El Nino
El Nino phenomena
ENSO
Environmental factors
Environmental Monitoring
Freshwater
Holoplankton
Inland water environment
Interspecific
Meroplankton
Neutral red
Ocean currents
Organisms
Pacific Ocean
Paracalanus
Plankton
Polychaeta
River discharge
River flow
River mouth
River mouths
Rivers
Runoff
Seawater
Southern Oscillation
Staining
Studies
Taxa
Variability
Water Movements
Zooplankton
Zooplankton - physiology
title An estimate of the percentage of non-predatory dead variability in coastal zooplankton of the southern Humboldt Current System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20estimate%20of%20the%20percentage%20of%20non-predatory%20dead%20variability%20in%20coastal%20zooplankton%20of%20the%20southern%20Humboldt%20Current%20System&rft.jtitle=Marine%20environmental%20research&rft.au=Krautz,%20M.C.&rft.date=2017-12&rft.volume=132&rft.spage=103&rft.epage=116&rft.pages=103-116&rft.issn=0141-1136&rft.eissn=1879-0291&rft_id=info:doi/10.1016/j.marenvres.2017.10.008&rft_dat=%3Cproquest_cross%3E1987704989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1987704989&rft_id=info:pmid/29126632&rft_els_id=S0141113617306244&rfr_iscdi=true