Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors

Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and solar-terrestrial physics 2008-12, Vol.70 (17), p.2203-2211
Hauptverfasser: Fang, T.W., Richmond, A.D., Liu, J.Y., Maute, A., Lin, C.H., Chen, C.H., Harper, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2211
container_issue 17
container_start_page 2203
container_title Journal of atmospheric and solar-terrestrial physics
container_volume 70
creator Fang, T.W.
Richmond, A.D.
Liu, J.Y.
Maute, A.
Lin, C.H.
Chen, C.H.
Harper, B.
description Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation ( H) at magnetometers near the equator and about 6–9° away from the equator, Δ H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity ( F 10.7=80, 140 and 200 units) variations of Δ H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.
doi_str_mv 10.1016/j.jastp.2008.04.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19632592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364682608001223</els_id><sourcerecordid>19632592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</originalsourceid><addsrcrecordid>eNp9kMluwyAQhlHVSk2XJ-iFS3uzC3jDhx6qqJuUqjmkZ4RhrGAR44AdqW9fsqjHnkDM988MH0J3lKSU0PKxSzsZxiFlhPCU5Clh9AzNKK_qhHKWn8d7VuZJyVl5ia5C6AghFePlDK0-nQaLg9lMVo7G9di1eFwDhu0kR-eNtBgsqNG7DkZs-kNxCX7aGdlj2Wu8XBtrhsH0gEMEnQ836KKVNsDt6bxG368vq_l7svh6-5g_LxKVZ2RMqqatdN0UiqumoYoUev_CW64LTuPe0BScsTbXDS0bzagk0FRVrlmm6rLlPLtGD8e-g3fbCcIoNiYosFb24KYgaF1mrKhZBLMjqLwLwUMrBm820v8ISsTeoOjEwaDYGxQkF9FgTN2f2sugpG297JUJf1FGCWF1VkXu6chB_OvOgBdBGegVaOOjEKGd-XfOL9mtiUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19632592</pqid></control><display><type>article</type><title>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fang, T.W. ; Richmond, A.D. ; Liu, J.Y. ; Maute, A. ; Lin, C.H. ; Chen, C.H. ; Harper, B.</creator><creatorcontrib>Fang, T.W. ; Richmond, A.D. ; Liu, J.Y. ; Maute, A. ; Lin, C.H. ; Chen, C.H. ; Harper, B.</creatorcontrib><description>Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation ( H) at magnetometers near the equator and about 6–9° away from the equator, Δ H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity ( F 10.7=80, 140 and 200 units) variations of Δ H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.</description><identifier>ISSN: 1364-6826</identifier><identifier>EISSN: 1879-1824</identifier><identifier>DOI: 10.1016/j.jastp.2008.04.021</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Earth, ocean, space ; Equatorial electrojet ; Exact sciences and technology ; External geophysics ; Magnetic perturbations ; Physics of the ionosphere ; Physics of the magnetosphere ; Seasonal and solar activity variation ; TIE-GCM</subject><ispartof>Journal of atmospheric and solar-terrestrial physics, 2008-12, Vol.70 (17), p.2203-2211</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</citedby><cites>FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jastp.2008.04.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21002937$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, T.W.</creatorcontrib><creatorcontrib>Richmond, A.D.</creatorcontrib><creatorcontrib>Liu, J.Y.</creatorcontrib><creatorcontrib>Maute, A.</creatorcontrib><creatorcontrib>Lin, C.H.</creatorcontrib><creatorcontrib>Chen, C.H.</creatorcontrib><creatorcontrib>Harper, B.</creatorcontrib><title>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</title><title>Journal of atmospheric and solar-terrestrial physics</title><description>Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation ( H) at magnetometers near the equator and about 6–9° away from the equator, Δ H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity ( F 10.7=80, 140 and 200 units) variations of Δ H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.</description><subject>Earth, ocean, space</subject><subject>Equatorial electrojet</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Magnetic perturbations</subject><subject>Physics of the ionosphere</subject><subject>Physics of the magnetosphere</subject><subject>Seasonal and solar activity variation</subject><subject>TIE-GCM</subject><issn>1364-6826</issn><issn>1879-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMluwyAQhlHVSk2XJ-iFS3uzC3jDhx6qqJuUqjmkZ4RhrGAR44AdqW9fsqjHnkDM988MH0J3lKSU0PKxSzsZxiFlhPCU5Clh9AzNKK_qhHKWn8d7VuZJyVl5ia5C6AghFePlDK0-nQaLg9lMVo7G9di1eFwDhu0kR-eNtBgsqNG7DkZs-kNxCX7aGdlj2Wu8XBtrhsH0gEMEnQ836KKVNsDt6bxG368vq_l7svh6-5g_LxKVZ2RMqqatdN0UiqumoYoUev_CW64LTuPe0BScsTbXDS0bzagk0FRVrlmm6rLlPLtGD8e-g3fbCcIoNiYosFb24KYgaF1mrKhZBLMjqLwLwUMrBm820v8ISsTeoOjEwaDYGxQkF9FgTN2f2sugpG297JUJf1FGCWF1VkXu6chB_OvOgBdBGegVaOOjEKGd-XfOL9mtiUc</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Fang, T.W.</creator><creator>Richmond, A.D.</creator><creator>Liu, J.Y.</creator><creator>Maute, A.</creator><creator>Lin, C.H.</creator><creator>Chen, C.H.</creator><creator>Harper, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081201</creationdate><title>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</title><author>Fang, T.W. ; Richmond, A.D. ; Liu, J.Y. ; Maute, A. ; Lin, C.H. ; Chen, C.H. ; Harper, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth, ocean, space</topic><topic>Equatorial electrojet</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Magnetic perturbations</topic><topic>Physics of the ionosphere</topic><topic>Physics of the magnetosphere</topic><topic>Seasonal and solar activity variation</topic><topic>TIE-GCM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, T.W.</creatorcontrib><creatorcontrib>Richmond, A.D.</creatorcontrib><creatorcontrib>Liu, J.Y.</creatorcontrib><creatorcontrib>Maute, A.</creatorcontrib><creatorcontrib>Lin, C.H.</creatorcontrib><creatorcontrib>Chen, C.H.</creatorcontrib><creatorcontrib>Harper, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, T.W.</au><au>Richmond, A.D.</au><au>Liu, J.Y.</au><au>Maute, A.</au><au>Lin, C.H.</au><au>Chen, C.H.</au><au>Harper, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</atitle><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>70</volume><issue>17</issue><spage>2203</spage><epage>2211</epage><pages>2203-2211</pages><issn>1364-6826</issn><eissn>1879-1824</eissn><abstract>Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation ( H) at magnetometers near the equator and about 6–9° away from the equator, Δ H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity ( F 10.7=80, 140 and 200 units) variations of Δ H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jastp.2008.04.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-6826
ispartof Journal of atmospheric and solar-terrestrial physics, 2008-12, Vol.70 (17), p.2203-2211
issn 1364-6826
1879-1824
language eng
recordid cdi_proquest_miscellaneous_19632592
source Elsevier ScienceDirect Journals Complete
subjects Earth, ocean, space
Equatorial electrojet
Exact sciences and technology
External geophysics
Magnetic perturbations
Physics of the ionosphere
Physics of the magnetosphere
Seasonal and solar activity variation
TIE-GCM
title Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20simulation%20of%20the%20equatorial%20electrojet%20in%20the%20Peruvian%20and%20Philippine%20sectors&rft.jtitle=Journal%20of%20atmospheric%20and%20solar-terrestrial%20physics&rft.au=Fang,%20T.W.&rft.date=2008-12-01&rft.volume=70&rft.issue=17&rft.spage=2203&rft.epage=2211&rft.pages=2203-2211&rft.issn=1364-6826&rft.eissn=1879-1824&rft_id=info:doi/10.1016/j.jastp.2008.04.021&rft_dat=%3Cproquest_cross%3E19632592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19632592&rft_id=info:pmid/&rft_els_id=S1364682608001223&rfr_iscdi=true