Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnet...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and solar-terrestrial physics 2008-12, Vol.70 (17), p.2203-2211 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2211 |
---|---|
container_issue | 17 |
container_start_page | 2203 |
container_title | Journal of atmospheric and solar-terrestrial physics |
container_volume | 70 |
creator | Fang, T.W. Richmond, A.D. Liu, J.Y. Maute, A. Lin, C.H. Chen, C.H. Harper, B. |
description | Between 100 and 120
km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (
H) at magnetometers near the equator and about 6–9° away from the equator, Δ
H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (
F
10.7=80, 140 and 200 units) variations of Δ
H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ
H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ
H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities. |
doi_str_mv | 10.1016/j.jastp.2008.04.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19632592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364682608001223</els_id><sourcerecordid>19632592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</originalsourceid><addsrcrecordid>eNp9kMluwyAQhlHVSk2XJ-iFS3uzC3jDhx6qqJuUqjmkZ4RhrGAR44AdqW9fsqjHnkDM988MH0J3lKSU0PKxSzsZxiFlhPCU5Clh9AzNKK_qhHKWn8d7VuZJyVl5ia5C6AghFePlDK0-nQaLg9lMVo7G9di1eFwDhu0kR-eNtBgsqNG7DkZs-kNxCX7aGdlj2Wu8XBtrhsH0gEMEnQ836KKVNsDt6bxG368vq_l7svh6-5g_LxKVZ2RMqqatdN0UiqumoYoUev_CW64LTuPe0BScsTbXDS0bzagk0FRVrlmm6rLlPLtGD8e-g3fbCcIoNiYosFb24KYgaF1mrKhZBLMjqLwLwUMrBm820v8ISsTeoOjEwaDYGxQkF9FgTN2f2sugpG297JUJf1FGCWF1VkXu6chB_OvOgBdBGegVaOOjEKGd-XfOL9mtiUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19632592</pqid></control><display><type>article</type><title>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fang, T.W. ; Richmond, A.D. ; Liu, J.Y. ; Maute, A. ; Lin, C.H. ; Chen, C.H. ; Harper, B.</creator><creatorcontrib>Fang, T.W. ; Richmond, A.D. ; Liu, J.Y. ; Maute, A. ; Lin, C.H. ; Chen, C.H. ; Harper, B.</creatorcontrib><description>Between 100 and 120
km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (
H) at magnetometers near the equator and about 6–9° away from the equator, Δ
H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (
F
10.7=80, 140 and 200 units) variations of Δ
H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ
H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ
H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.</description><identifier>ISSN: 1364-6826</identifier><identifier>EISSN: 1879-1824</identifier><identifier>DOI: 10.1016/j.jastp.2008.04.021</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Earth, ocean, space ; Equatorial electrojet ; Exact sciences and technology ; External geophysics ; Magnetic perturbations ; Physics of the ionosphere ; Physics of the magnetosphere ; Seasonal and solar activity variation ; TIE-GCM</subject><ispartof>Journal of atmospheric and solar-terrestrial physics, 2008-12, Vol.70 (17), p.2203-2211</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</citedby><cites>FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jastp.2008.04.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21002937$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, T.W.</creatorcontrib><creatorcontrib>Richmond, A.D.</creatorcontrib><creatorcontrib>Liu, J.Y.</creatorcontrib><creatorcontrib>Maute, A.</creatorcontrib><creatorcontrib>Lin, C.H.</creatorcontrib><creatorcontrib>Chen, C.H.</creatorcontrib><creatorcontrib>Harper, B.</creatorcontrib><title>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</title><title>Journal of atmospheric and solar-terrestrial physics</title><description>Between 100 and 120
km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (
H) at magnetometers near the equator and about 6–9° away from the equator, Δ
H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (
F
10.7=80, 140 and 200 units) variations of Δ
H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ
H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ
H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.</description><subject>Earth, ocean, space</subject><subject>Equatorial electrojet</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Magnetic perturbations</subject><subject>Physics of the ionosphere</subject><subject>Physics of the magnetosphere</subject><subject>Seasonal and solar activity variation</subject><subject>TIE-GCM</subject><issn>1364-6826</issn><issn>1879-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMluwyAQhlHVSk2XJ-iFS3uzC3jDhx6qqJuUqjmkZ4RhrGAR44AdqW9fsqjHnkDM988MH0J3lKSU0PKxSzsZxiFlhPCU5Clh9AzNKK_qhHKWn8d7VuZJyVl5ia5C6AghFePlDK0-nQaLg9lMVo7G9di1eFwDhu0kR-eNtBgsqNG7DkZs-kNxCX7aGdlj2Wu8XBtrhsH0gEMEnQ836KKVNsDt6bxG368vq_l7svh6-5g_LxKVZ2RMqqatdN0UiqumoYoUev_CW64LTuPe0BScsTbXDS0bzagk0FRVrlmm6rLlPLtGD8e-g3fbCcIoNiYosFb24KYgaF1mrKhZBLMjqLwLwUMrBm820v8ISsTeoOjEwaDYGxQkF9FgTN2f2sugpG297JUJf1FGCWF1VkXu6chB_OvOgBdBGegVaOOjEKGd-XfOL9mtiUc</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Fang, T.W.</creator><creator>Richmond, A.D.</creator><creator>Liu, J.Y.</creator><creator>Maute, A.</creator><creator>Lin, C.H.</creator><creator>Chen, C.H.</creator><creator>Harper, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081201</creationdate><title>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</title><author>Fang, T.W. ; Richmond, A.D. ; Liu, J.Y. ; Maute, A. ; Lin, C.H. ; Chen, C.H. ; Harper, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-7bf7d9b5c8cbb1c05d7bf78f8d581182eb5822f4db16bd21a0eb774d23c96f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth, ocean, space</topic><topic>Equatorial electrojet</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Magnetic perturbations</topic><topic>Physics of the ionosphere</topic><topic>Physics of the magnetosphere</topic><topic>Seasonal and solar activity variation</topic><topic>TIE-GCM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, T.W.</creatorcontrib><creatorcontrib>Richmond, A.D.</creatorcontrib><creatorcontrib>Liu, J.Y.</creatorcontrib><creatorcontrib>Maute, A.</creatorcontrib><creatorcontrib>Lin, C.H.</creatorcontrib><creatorcontrib>Chen, C.H.</creatorcontrib><creatorcontrib>Harper, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, T.W.</au><au>Richmond, A.D.</au><au>Liu, J.Y.</au><au>Maute, A.</au><au>Lin, C.H.</au><au>Chen, C.H.</au><au>Harper, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors</atitle><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>70</volume><issue>17</issue><spage>2203</spage><epage>2211</epage><pages>2203-2211</pages><issn>1364-6826</issn><eissn>1879-1824</eissn><abstract>Between 100 and 120
km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (
H) at magnetometers near the equator and about 6–9° away from the equator, Δ
H, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (
F
10.7=80, 140 and 200 units) variations of Δ
H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of Δ
H to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of Δ
H and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jastp.2008.04.021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-6826 |
ispartof | Journal of atmospheric and solar-terrestrial physics, 2008-12, Vol.70 (17), p.2203-2211 |
issn | 1364-6826 1879-1824 |
language | eng |
recordid | cdi_proquest_miscellaneous_19632592 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Earth, ocean, space Equatorial electrojet Exact sciences and technology External geophysics Magnetic perturbations Physics of the ionosphere Physics of the magnetosphere Seasonal and solar activity variation TIE-GCM |
title | Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20simulation%20of%20the%20equatorial%20electrojet%20in%20the%20Peruvian%20and%20Philippine%20sectors&rft.jtitle=Journal%20of%20atmospheric%20and%20solar-terrestrial%20physics&rft.au=Fang,%20T.W.&rft.date=2008-12-01&rft.volume=70&rft.issue=17&rft.spage=2203&rft.epage=2211&rft.pages=2203-2211&rft.issn=1364-6826&rft.eissn=1879-1824&rft_id=info:doi/10.1016/j.jastp.2008.04.021&rft_dat=%3Cproquest_cross%3E19632592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19632592&rft_id=info:pmid/&rft_els_id=S1364682608001223&rfr_iscdi=true |