Extension of Latin hypercube samples with correlated variables

A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2 m that contains the elements of the origi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2008-07, Vol.93 (7), p.1047-1059
Hauptverfasser: Sallaberry, C.J., Helton, J.C., Hora, S.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 7
container_start_page 1047
container_title Reliability engineering & system safety
container_volume 93
creator Sallaberry, C.J.
Helton, J.C.
Hora, S.C.
description A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2 m that contains the elements of the original LHS and has a rank correlation matrix that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient use of a necessarily limited number of model evaluations.
doi_str_mv 10.1016/j.ress.2007.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19629919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832007001378</els_id><sourcerecordid>19629919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6403f7f6912743aef325abf76c4959f12113e73016dc9be72448bb6bacef29503</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzjlAreE9SNxLCEkhMpDqsQFzpbjrFVXaVLstNB_j6tWHDntYb-Z3RlCrikUFGh1tywCxlgwAFmAKADKEzKhtVQ51Lw6JRNQJc1rzuCcXMS4BAChSjkhD7OfEfvohz4bXDY3o--zxW6NwW4azKJZrTuM2bcfF5kdQsDOjNhmWxO8adLmkpw500W8Os4p-XyefTy95vP3l7enx3luBZRjXgngTrpKUSYFN-g4K03jZGXTF8pRRilHyVOS1qoGJROibpqqMRYdUyXwKbk9-K7D8LXBOOqVjxa7zvQ4bKKmqmJKUZVAdgBtGGIM6PQ6-JUJO01B76vSS72vSu-r0iB0qiqJbo7uJlrTuWB66-OfkgGVtahk4u4PHKaoW49BR-uxt9j6gHbU7eD_O_MLDZx_Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19629919</pqid></control><display><type>article</type><title>Extension of Latin hypercube samples with correlated variables</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sallaberry, C.J. ; Helton, J.C. ; Hora, S.C.</creator><creatorcontrib>Sallaberry, C.J. ; Helton, J.C. ; Hora, S.C.</creatorcontrib><description>A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2 m that contains the elements of the original LHS and has a rank correlation matrix that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient use of a necessarily limited number of model evaluations.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2007.04.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Experimental design ; Latin hypercube sample ; Mathematics ; Monte Carlo analysis ; Operational research and scientific management ; Operational research. Management science ; Probability and statistics ; Rank correlation ; Reliability theory. Replacement problems ; Sample size extension ; Sciences and techniques of general use ; Sensitivity analysis ; Statistics ; Uncertainty analysis</subject><ispartof>Reliability engineering &amp; system safety, 2008-07, Vol.93 (7), p.1047-1059</ispartof><rights>2007</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6403f7f6912743aef325abf76c4959f12113e73016dc9be72448bb6bacef29503</citedby><cites>FETCH-LOGICAL-c405t-6403f7f6912743aef325abf76c4959f12113e73016dc9be72448bb6bacef29503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832007001378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20178467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sallaberry, C.J.</creatorcontrib><creatorcontrib>Helton, J.C.</creatorcontrib><creatorcontrib>Hora, S.C.</creatorcontrib><title>Extension of Latin hypercube samples with correlated variables</title><title>Reliability engineering &amp; system safety</title><description>A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2 m that contains the elements of the original LHS and has a rank correlation matrix that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient use of a necessarily limited number of model evaluations.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Latin hypercube sample</subject><subject>Mathematics</subject><subject>Monte Carlo analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability and statistics</subject><subject>Rank correlation</subject><subject>Reliability theory. Replacement problems</subject><subject>Sample size extension</subject><subject>Sciences and techniques of general use</subject><subject>Sensitivity analysis</subject><subject>Statistics</subject><subject>Uncertainty analysis</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzjlAreE9SNxLCEkhMpDqsQFzpbjrFVXaVLstNB_j6tWHDntYb-Z3RlCrikUFGh1tywCxlgwAFmAKADKEzKhtVQ51Lw6JRNQJc1rzuCcXMS4BAChSjkhD7OfEfvohz4bXDY3o--zxW6NwW4azKJZrTuM2bcfF5kdQsDOjNhmWxO8adLmkpw500W8Os4p-XyefTy95vP3l7enx3luBZRjXgngTrpKUSYFN-g4K03jZGXTF8pRRilHyVOS1qoGJROibpqqMRYdUyXwKbk9-K7D8LXBOOqVjxa7zvQ4bKKmqmJKUZVAdgBtGGIM6PQ6-JUJO01B76vSS72vSu-r0iB0qiqJbo7uJlrTuWB66-OfkgGVtahk4u4PHKaoW49BR-uxt9j6gHbU7eD_O_MLDZx_Gg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Sallaberry, C.J.</creator><creator>Helton, J.C.</creator><creator>Hora, S.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20080701</creationdate><title>Extension of Latin hypercube samples with correlated variables</title><author>Sallaberry, C.J. ; Helton, J.C. ; Hora, S.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6403f7f6912743aef325abf76c4959f12113e73016dc9be72448bb6bacef29503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Latin hypercube sample</topic><topic>Mathematics</topic><topic>Monte Carlo analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability and statistics</topic><topic>Rank correlation</topic><topic>Reliability theory. Replacement problems</topic><topic>Sample size extension</topic><topic>Sciences and techniques of general use</topic><topic>Sensitivity analysis</topic><topic>Statistics</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallaberry, C.J.</creatorcontrib><creatorcontrib>Helton, J.C.</creatorcontrib><creatorcontrib>Hora, S.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sallaberry, C.J.</au><au>Helton, J.C.</au><au>Hora, S.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Latin hypercube samples with correlated variables</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>93</volume><issue>7</issue><spage>1047</spage><epage>1059</epage><pages>1047-1059</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2 m that contains the elements of the original LHS and has a rank correlation matrix that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient use of a necessarily limited number of model evaluations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2007.04.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2008-07, Vol.93 (7), p.1047-1059
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_19629919
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Exact sciences and technology
Experimental design
Latin hypercube sample
Mathematics
Monte Carlo analysis
Operational research and scientific management
Operational research. Management science
Probability and statistics
Rank correlation
Reliability theory. Replacement problems
Sample size extension
Sciences and techniques of general use
Sensitivity analysis
Statistics
Uncertainty analysis
title Extension of Latin hypercube samples with correlated variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Latin%20hypercube%20samples%20with%20correlated%20variables&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Sallaberry,%20C.J.&rft.date=2008-07-01&rft.volume=93&rft.issue=7&rft.spage=1047&rft.epage=1059&rft.pages=1047-1059&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2007.04.005&rft_dat=%3Cproquest_cross%3E19629919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19629919&rft_id=info:pmid/&rft_els_id=S0951832007001378&rfr_iscdi=true