Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-12, Vol.11 (12), p.12020-12026
Hauptverfasser: Ji, Ziheng, Hong, Hao, Zhang, Jin, Zhang, Qi, Huang, Wei, Cao, Ting, Qiao, Ruixi, Liu, Can, Liang, Jing, Jin, Chuanhong, Jiao, Liying, Shi, Kebin, Meng, Sheng, Liu, Kaihui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12026
container_issue 12
container_start_page 12020
container_title ACS nano
container_volume 11
creator Ji, Ziheng
Hong, Hao
Zhang, Jin
Zhang, Qi
Huang, Wei
Cao, Ting
Qiao, Ruixi
Liu, Can
Liang, Jing
Jin, Chuanhong
Jiao, Liying
Shi, Kebin
Meng, Sheng
Liu, Kaihui
description Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS2/WS2 bilayer with various stacking configurations, by optical two-color ultrafast pump–probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.
doi_str_mv 10.1021/acsnano.7b04541
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1962423912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962423912</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-37cfee524ad556e8a65db8328582e87b4a008036811e8b3aa8d507ced74875b43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbPXnMUJO1-7_aoxY9KRTAtelsmyaSmxk3dTQ7-eyMtXt55YR6G4SHkktEJo5xNoYgefDsxOZVKsiMyYjOhU2r1-_F_V-yUnMW4pVQZa_SIPL22eR-7JOug-Kz9Jl34Enc4hO-SddMFqGBYzz8gbDBZBfCxwpDUPnluMz59y3hyWzfwgyGek5MKmogXhzkm6_u71fwxXb48LOY3yxQ4l10qTFEhKi6hVEqjBa3K3ApuleVoTS6BUkuFtoyhzQWALRU1BZZGWqNyKcbkan93F9rvHmPnvupYYNOAx7aPjs00l1zMGB_Q6z06yHHbtg9-eMwx6v6MuYMxdzAmfgHiYF9F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962423912</pqid></control><display><type>article</type><title>Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers</title><source>ACS Publications</source><creator>Ji, Ziheng ; Hong, Hao ; Zhang, Jin ; Zhang, Qi ; Huang, Wei ; Cao, Ting ; Qiao, Ruixi ; Liu, Can ; Liang, Jing ; Jin, Chuanhong ; Jiao, Liying ; Shi, Kebin ; Meng, Sheng ; Liu, Kaihui</creator><creatorcontrib>Ji, Ziheng ; Hong, Hao ; Zhang, Jin ; Zhang, Qi ; Huang, Wei ; Cao, Ting ; Qiao, Ruixi ; Liu, Can ; Liang, Jing ; Jin, Chuanhong ; Jiao, Liying ; Shi, Kebin ; Meng, Sheng ; Liu, Kaihui</creatorcontrib><description>Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS2/WS2 bilayer with various stacking configurations, by optical two-color ultrafast pump–probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b04541</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2017-12, Vol.11 (12), p.12020-12026</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8781-2495 ; 0000-0002-1553-1432 ; 0000-0001-7830-3464 ; 0000-0002-6576-906X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b04541$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b04541$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Ji, Ziheng</creatorcontrib><creatorcontrib>Hong, Hao</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Qiao, Ruixi</creatorcontrib><creatorcontrib>Liu, Can</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Jin, Chuanhong</creatorcontrib><creatorcontrib>Jiao, Liying</creatorcontrib><creatorcontrib>Shi, Kebin</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><title>Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS2/WS2 bilayer with various stacking configurations, by optical two-color ultrafast pump–probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbPXnMUJO1-7_aoxY9KRTAtelsmyaSmxk3dTQ7-eyMtXt55YR6G4SHkktEJo5xNoYgefDsxOZVKsiMyYjOhU2r1-_F_V-yUnMW4pVQZa_SIPL22eR-7JOug-Kz9Jl34Enc4hO-SddMFqGBYzz8gbDBZBfCxwpDUPnluMz59y3hyWzfwgyGek5MKmogXhzkm6_u71fwxXb48LOY3yxQ4l10qTFEhKi6hVEqjBa3K3ApuleVoTS6BUkuFtoyhzQWALRU1BZZGWqNyKcbkan93F9rvHmPnvupYYNOAx7aPjs00l1zMGB_Q6z06yHHbtg9-eMwx6v6MuYMxdzAmfgHiYF9F</recordid><startdate>20171226</startdate><enddate>20171226</enddate><creator>Ji, Ziheng</creator><creator>Hong, Hao</creator><creator>Zhang, Jin</creator><creator>Zhang, Qi</creator><creator>Huang, Wei</creator><creator>Cao, Ting</creator><creator>Qiao, Ruixi</creator><creator>Liu, Can</creator><creator>Liang, Jing</creator><creator>Jin, Chuanhong</creator><creator>Jiao, Liying</creator><creator>Shi, Kebin</creator><creator>Meng, Sheng</creator><creator>Liu, Kaihui</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0001-7830-3464</orcidid><orcidid>https://orcid.org/0000-0002-6576-906X</orcidid></search><sort><creationdate>20171226</creationdate><title>Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers</title><author>Ji, Ziheng ; Hong, Hao ; Zhang, Jin ; Zhang, Qi ; Huang, Wei ; Cao, Ting ; Qiao, Ruixi ; Liu, Can ; Liang, Jing ; Jin, Chuanhong ; Jiao, Liying ; Shi, Kebin ; Meng, Sheng ; Liu, Kaihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-37cfee524ad556e8a65db8328582e87b4a008036811e8b3aa8d507ced74875b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Ziheng</creatorcontrib><creatorcontrib>Hong, Hao</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Qiao, Ruixi</creatorcontrib><creatorcontrib>Liu, Can</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Jin, Chuanhong</creatorcontrib><creatorcontrib>Jiao, Liying</creatorcontrib><creatorcontrib>Shi, Kebin</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Ziheng</au><au>Hong, Hao</au><au>Zhang, Jin</au><au>Zhang, Qi</au><au>Huang, Wei</au><au>Cao, Ting</au><au>Qiao, Ruixi</au><au>Liu, Can</au><au>Liang, Jing</au><au>Jin, Chuanhong</au><au>Jiao, Liying</au><au>Shi, Kebin</au><au>Meng, Sheng</au><au>Liu, Kaihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-12-26</date><risdate>2017</risdate><volume>11</volume><issue>12</issue><spage>12020</spage><epage>12026</epage><pages>12020-12026</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS2/WS2 bilayer with various stacking configurations, by optical two-color ultrafast pump–probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.7b04541</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0001-7830-3464</orcidid><orcidid>https://orcid.org/0000-0002-6576-906X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-12, Vol.11 (12), p.12020-12026
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1962423912
source ACS Publications
title Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Stacking-Independent%20Ultrafast%20Charge%20Transfer%20in%20MoS2/WS2%20Bilayers&rft.jtitle=ACS%20nano&rft.au=Ji,%20Ziheng&rft.date=2017-12-26&rft.volume=11&rft.issue=12&rft.spage=12020&rft.epage=12026&rft.pages=12020-12026&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b04541&rft_dat=%3Cproquest_acs_j%3E1962423912%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1962423912&rft_id=info:pmid/&rfr_iscdi=true