The genetic and molecular basis of crop height based on a rice model
Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the ‘green revolution’ benefited from a combination of breeding for high-yielding dwarf...
Gespeichert in:
Veröffentlicht in: | Planta 2018-01, Vol.247 (1), p.1-26 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Planta |
container_volume | 247 |
creator | Liu, Fang Wang, Pandi Zhang, Xiaobo Li, Xiaofei Yan, Xiaohong Fu, Donghui Wu, Gang |
description | Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the ‘green revolution’ benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops. |
doi_str_mv | 10.1007/s00425-017-2798-1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1961642791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48726831</jstor_id><sourcerecordid>48726831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-5244f9307e637c46df98f2419b237bc8de7e763a4ecc7c29ca6ee37156b33dc53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwAxhAllhYAv6K7YyofEqVWMpsOc6lTZUmxU4G_j2OUirEwGTr7rnn7BehS0ruKCHqPhAiWJoQqhKmMp3QIzSlgrOEEaGP0ZSQeCcZTyfoLIQNIbGp1CmasIwOAjZFj8s14BU00FUO26bA27YG19fW49yGKuC2xM63O7yGarXuhiIUuG2wxb5yEPEC6nN0Uto6wMX-nKGP56fl_DVZvL-8zR8WiROSdEnKhCgzThRIrmKpKDNdMkGznHGVO12AAiW5FeCccixzVgJwRVOZc164lM_Q7ejd-fazh9CZbRUc1LVtoO2DoZmkUsQoaERv_qCbtvdNfF2kdMo0lVxHio5U_GIIHkqz89XW-i9DiRkSMmPEJkZshojNYL7em_t8C8Vh4ifTCLARCLHVrMD_Wv2P9Woc2oSu9Qep0IpJzSn_BodAjZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985281638</pqid></control><display><type>article</type><title>The genetic and molecular basis of crop height based on a rice model</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Liu, Fang ; Wang, Pandi ; Zhang, Xiaobo ; Li, Xiaofei ; Yan, Xiaohong ; Fu, Donghui ; Wu, Gang</creator><creatorcontrib>Liu, Fang ; Wang, Pandi ; Zhang, Xiaobo ; Li, Xiaofei ; Yan, Xiaohong ; Fu, Donghui ; Wu, Gang</creatorcontrib><description>Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the ‘green revolution’ benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-017-2798-1</identifier><identifier>PMID: 29110072</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agricultural production ; Agriculture ; Agrochemicals ; Apical dominance ; Biomedical and Life Sciences ; Biosynthesis ; Biosynthetic Pathways ; Brassinosteroids ; Brassinosteroids - metabolism ; Breeding ; Cereal crops ; Crop yield ; Crops ; Crops, Agricultural - genetics ; Crops, Agricultural - growth & development ; Ecology ; Fertilizers ; Forestry ; Gene Expression Regulation, Plant ; Genes ; Genetic engineering ; Genetic improvement ; Gibberellins ; Gibberellins - metabolism ; Green revolution ; Harvesting ; Irrigation ; Lactones - metabolism ; Life Sciences ; Lodging ; Mechanization ; Models, Biological ; Oryza - genetics ; Oryza - growth & development ; Phenotype ; Plant breeding ; Plant Growth Regulators - metabolism ; Plant hormones ; Plant Sciences ; REVIEW ; Rice ; Signal Transduction ; Transduction ; Wheat</subject><ispartof>Planta, 2018-01, Vol.247 (1), p.1-26</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Planta is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-5244f9307e637c46df98f2419b237bc8de7e763a4ecc7c29ca6ee37156b33dc53</citedby><cites>FETCH-LOGICAL-c460t-5244f9307e637c46df98f2419b237bc8de7e763a4ecc7c29ca6ee37156b33dc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48726831$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48726831$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29110072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Wang, Pandi</creatorcontrib><creatorcontrib>Zhang, Xiaobo</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Yan, Xiaohong</creatorcontrib><creatorcontrib>Fu, Donghui</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><title>The genetic and molecular basis of crop height based on a rice model</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the ‘green revolution’ benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Agrochemicals</subject><subject>Apical dominance</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Brassinosteroids</subject><subject>Brassinosteroids - metabolism</subject><subject>Breeding</subject><subject>Cereal crops</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - growth & development</subject><subject>Ecology</subject><subject>Fertilizers</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic improvement</subject><subject>Gibberellins</subject><subject>Gibberellins - metabolism</subject><subject>Green revolution</subject><subject>Harvesting</subject><subject>Irrigation</subject><subject>Lactones - metabolism</subject><subject>Life Sciences</subject><subject>Lodging</subject><subject>Mechanization</subject><subject>Models, Biological</subject><subject>Oryza - genetics</subject><subject>Oryza - growth & development</subject><subject>Phenotype</subject><subject>Plant breeding</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant hormones</subject><subject>Plant Sciences</subject><subject>REVIEW</subject><subject>Rice</subject><subject>Signal Transduction</subject><subject>Transduction</subject><subject>Wheat</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwAxhAllhYAv6K7YyofEqVWMpsOc6lTZUmxU4G_j2OUirEwGTr7rnn7BehS0ruKCHqPhAiWJoQqhKmMp3QIzSlgrOEEaGP0ZSQeCcZTyfoLIQNIbGp1CmasIwOAjZFj8s14BU00FUO26bA27YG19fW49yGKuC2xM63O7yGarXuhiIUuG2wxb5yEPEC6nN0Uto6wMX-nKGP56fl_DVZvL-8zR8WiROSdEnKhCgzThRIrmKpKDNdMkGznHGVO12AAiW5FeCccixzVgJwRVOZc164lM_Q7ejd-fazh9CZbRUc1LVtoO2DoZmkUsQoaERv_qCbtvdNfF2kdMo0lVxHio5U_GIIHkqz89XW-i9DiRkSMmPEJkZshojNYL7em_t8C8Vh4ifTCLARCLHVrMD_Wv2P9Woc2oSu9Qep0IpJzSn_BodAjZo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liu, Fang</creator><creator>Wang, Pandi</creator><creator>Zhang, Xiaobo</creator><creator>Li, Xiaofei</creator><creator>Yan, Xiaohong</creator><creator>Fu, Donghui</creator><creator>Wu, Gang</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180101</creationdate><title>The genetic and molecular basis of crop height based on a rice model</title><author>Liu, Fang ; Wang, Pandi ; Zhang, Xiaobo ; Li, Xiaofei ; Yan, Xiaohong ; Fu, Donghui ; Wu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-5244f9307e637c46df98f2419b237bc8de7e763a4ecc7c29ca6ee37156b33dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Agrochemicals</topic><topic>Apical dominance</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Brassinosteroids</topic><topic>Brassinosteroids - metabolism</topic><topic>Breeding</topic><topic>Cereal crops</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - growth & development</topic><topic>Ecology</topic><topic>Fertilizers</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic improvement</topic><topic>Gibberellins</topic><topic>Gibberellins - metabolism</topic><topic>Green revolution</topic><topic>Harvesting</topic><topic>Irrigation</topic><topic>Lactones - metabolism</topic><topic>Life Sciences</topic><topic>Lodging</topic><topic>Mechanization</topic><topic>Models, Biological</topic><topic>Oryza - genetics</topic><topic>Oryza - growth & development</topic><topic>Phenotype</topic><topic>Plant breeding</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant hormones</topic><topic>Plant Sciences</topic><topic>REVIEW</topic><topic>Rice</topic><topic>Signal Transduction</topic><topic>Transduction</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Wang, Pandi</creatorcontrib><creatorcontrib>Zhang, Xiaobo</creatorcontrib><creatorcontrib>Li, Xiaofei</creatorcontrib><creatorcontrib>Yan, Xiaohong</creatorcontrib><creatorcontrib>Fu, Donghui</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fang</au><au>Wang, Pandi</au><au>Zhang, Xiaobo</au><au>Li, Xiaofei</au><au>Yan, Xiaohong</au><au>Fu, Donghui</au><au>Wu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The genetic and molecular basis of crop height based on a rice model</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>247</volume><issue>1</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the ‘green revolution’ benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>29110072</pmid><doi>10.1007/s00425-017-2798-1</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2018-01, Vol.247 (1), p.1-26 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_1961642791 |
source | MEDLINE; SpringerNature Journals; JSTOR Archive Collection A-Z Listing |
subjects | Agricultural production Agriculture Agrochemicals Apical dominance Biomedical and Life Sciences Biosynthesis Biosynthetic Pathways Brassinosteroids Brassinosteroids - metabolism Breeding Cereal crops Crop yield Crops Crops, Agricultural - genetics Crops, Agricultural - growth & development Ecology Fertilizers Forestry Gene Expression Regulation, Plant Genes Genetic engineering Genetic improvement Gibberellins Gibberellins - metabolism Green revolution Harvesting Irrigation Lactones - metabolism Life Sciences Lodging Mechanization Models, Biological Oryza - genetics Oryza - growth & development Phenotype Plant breeding Plant Growth Regulators - metabolism Plant hormones Plant Sciences REVIEW Rice Signal Transduction Transduction Wheat |
title | The genetic and molecular basis of crop height based on a rice model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20genetic%20and%20molecular%20basis%20of%20crop%20height%20based%20on%20a%20rice%20model&rft.jtitle=Planta&rft.au=Liu,%20Fang&rft.date=2018-01-01&rft.volume=247&rft.issue=1&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-017-2798-1&rft_dat=%3Cjstor_proqu%3E48726831%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985281638&rft_id=info:pmid/29110072&rft_jstor_id=48726831&rfr_iscdi=true |