Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution
[Display omitted] A novel nanoscale adsorbing material, palygorskite (PGS) grafted polymethacrylic acid (PMAA) (PGS-g-PMAA), was successfully synthesized via atom-transfer radical-polymerization (ATRP). The grafting reaction was completed through a heterogeneous reaction in aqueous phase at normal t...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2018-02, Vol.512, p.657-664 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | |
container_start_page | 657 |
container_title | Journal of colloid and interface science |
container_volume | 512 |
creator | Chen, Jindong Luo, Wenjun Guo, Aifeng Luo, Tiantian Lin, Chao Li, Haifeng Jing, Luru |
description | [Display omitted]
A novel nanoscale adsorbing material, palygorskite (PGS) grafted polymethacrylic acid (PMAA) (PGS-g-PMAA), was successfully synthesized via atom-transfer radical-polymerization (ATRP). The grafting reaction was completed through a heterogeneous reaction in aqueous phase at normal temperature. Ce3+ was employed as a model to systematically investigate its adsorption performance. Meanwhile, the palygorskite was characterized by X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The results show that PGS-g-PMAA with abundant and highly accessible carboxyl groups demonstrated exceptional adsorption capacity to Ce3+. When pH is 7, temperature is 298.15 K, and the concentration of Ce3+ is 300 mg/g, the adsorption capacity reached the maximum (160.2 mg/g). PGS-g-PMAA shows a high adsorption rate, it reached adsorption equilibrium only after 40 min. In the premise of keeping the original structure of PGS, PMAA was bonded to its surface through the covalent bond, and the grafting ratio was only 15.4%. The adsorbability of PGS-g-PMAA indicated that the carboxylate-rich palygorskite composite is a promising adsorbent for removing the rare earth ions in aqueous solution. And this conclusion shows that ATRP method is an effective method for grafting functional polymer onto the surface of mineral in the aqueous phase. |
doi_str_mv | 10.1016/j.jcis.2017.09.107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1961037303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979717311451</els_id><sourcerecordid>1961037303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-d1737e49953d6fb9c5bb7938ebfbf4ed1f6690378ee6a2b4b4f4be51f1ab40373</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU85CtL60rTNBrzI4j9Y0IOeQ5K-aNZuU5Pu4n57W9azpwc_ZoZ5Q8glg5wBq2_W-dr6lBfARA5yZOKIzBjIKhMM-DGZARQsk0KKU3KW0hqAsaqSM2JfI_Y66sGHjgZHNe3CDltqdTThZ9_qAbPo7Sftdbv_CDF9-QGpTlR3VDcpRIPdQF2IdIn8mroYNlR_bzFsE02h3U655-TE6Tbhxd-dk_eH-7flU7Z6eXxe3q0yywGGrGGCCyylrHhTOyNtZYyQfIHGGVdiw1xdS-BigVjrwpSmdKXBijmmTTlyPidXh9w-hrFCGtTGJ4ttq7upj2KyZpMO-CgtDlIbQ0oRneqj3-i4VwzUtKhaq2lRNS2qQI5syr89mHB8YucxqmQ9dhYbH9EOqgn-P_svmVOA2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961037303</pqid></control><display><type>article</type><title>Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Jindong ; Luo, Wenjun ; Guo, Aifeng ; Luo, Tiantian ; Lin, Chao ; Li, Haifeng ; Jing, Luru</creator><creatorcontrib>Chen, Jindong ; Luo, Wenjun ; Guo, Aifeng ; Luo, Tiantian ; Lin, Chao ; Li, Haifeng ; Jing, Luru</creatorcontrib><description>[Display omitted]
A novel nanoscale adsorbing material, palygorskite (PGS) grafted polymethacrylic acid (PMAA) (PGS-g-PMAA), was successfully synthesized via atom-transfer radical-polymerization (ATRP). The grafting reaction was completed through a heterogeneous reaction in aqueous phase at normal temperature. Ce3+ was employed as a model to systematically investigate its adsorption performance. Meanwhile, the palygorskite was characterized by X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The results show that PGS-g-PMAA with abundant and highly accessible carboxyl groups demonstrated exceptional adsorption capacity to Ce3+. When pH is 7, temperature is 298.15 K, and the concentration of Ce3+ is 300 mg/g, the adsorption capacity reached the maximum (160.2 mg/g). PGS-g-PMAA shows a high adsorption rate, it reached adsorption equilibrium only after 40 min. In the premise of keeping the original structure of PGS, PMAA was bonded to its surface through the covalent bond, and the grafting ratio was only 15.4%. The adsorbability of PGS-g-PMAA indicated that the carboxylate-rich palygorskite composite is a promising adsorbent for removing the rare earth ions in aqueous solution. And this conclusion shows that ATRP method is an effective method for grafting functional polymer onto the surface of mineral in the aqueous phase.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2017.09.107</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Adsorption ; ATRP ; Cerium(III) ; Palygorskite ; Surface graft modification</subject><ispartof>Journal of colloid and interface science, 2018-02, Vol.512, p.657-664</ispartof><rights>2017 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-d1737e49953d6fb9c5bb7938ebfbf4ed1f6690378ee6a2b4b4f4be51f1ab40373</citedby><cites>FETCH-LOGICAL-c300t-d1737e49953d6fb9c5bb7938ebfbf4ed1f6690378ee6a2b4b4f4be51f1ab40373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2017.09.107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Chen, Jindong</creatorcontrib><creatorcontrib>Luo, Wenjun</creatorcontrib><creatorcontrib>Guo, Aifeng</creatorcontrib><creatorcontrib>Luo, Tiantian</creatorcontrib><creatorcontrib>Lin, Chao</creatorcontrib><creatorcontrib>Li, Haifeng</creatorcontrib><creatorcontrib>Jing, Luru</creatorcontrib><title>Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution</title><title>Journal of colloid and interface science</title><description>[Display omitted]
A novel nanoscale adsorbing material, palygorskite (PGS) grafted polymethacrylic acid (PMAA) (PGS-g-PMAA), was successfully synthesized via atom-transfer radical-polymerization (ATRP). The grafting reaction was completed through a heterogeneous reaction in aqueous phase at normal temperature. Ce3+ was employed as a model to systematically investigate its adsorption performance. Meanwhile, the palygorskite was characterized by X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The results show that PGS-g-PMAA with abundant and highly accessible carboxyl groups demonstrated exceptional adsorption capacity to Ce3+. When pH is 7, temperature is 298.15 K, and the concentration of Ce3+ is 300 mg/g, the adsorption capacity reached the maximum (160.2 mg/g). PGS-g-PMAA shows a high adsorption rate, it reached adsorption equilibrium only after 40 min. In the premise of keeping the original structure of PGS, PMAA was bonded to its surface through the covalent bond, and the grafting ratio was only 15.4%. The adsorbability of PGS-g-PMAA indicated that the carboxylate-rich palygorskite composite is a promising adsorbent for removing the rare earth ions in aqueous solution. And this conclusion shows that ATRP method is an effective method for grafting functional polymer onto the surface of mineral in the aqueous phase.</description><subject>Adsorption</subject><subject>ATRP</subject><subject>Cerium(III)</subject><subject>Palygorskite</subject><subject>Surface graft modification</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU85CtL60rTNBrzI4j9Y0IOeQ5K-aNZuU5Pu4n57W9azpwc_ZoZ5Q8glg5wBq2_W-dr6lBfARA5yZOKIzBjIKhMM-DGZARQsk0KKU3KW0hqAsaqSM2JfI_Y66sGHjgZHNe3CDltqdTThZ9_qAbPo7Sftdbv_CDF9-QGpTlR3VDcpRIPdQF2IdIn8mroYNlR_bzFsE02h3U655-TE6Tbhxd-dk_eH-7flU7Z6eXxe3q0yywGGrGGCCyylrHhTOyNtZYyQfIHGGVdiw1xdS-BigVjrwpSmdKXBijmmTTlyPidXh9w-hrFCGtTGJ4ttq7upj2KyZpMO-CgtDlIbQ0oRneqj3-i4VwzUtKhaq2lRNS2qQI5syr89mHB8YucxqmQ9dhYbH9EOqgn-P_svmVOA2w</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Chen, Jindong</creator><creator>Luo, Wenjun</creator><creator>Guo, Aifeng</creator><creator>Luo, Tiantian</creator><creator>Lin, Chao</creator><creator>Li, Haifeng</creator><creator>Jing, Luru</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180215</creationdate><title>Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution</title><author>Chen, Jindong ; Luo, Wenjun ; Guo, Aifeng ; Luo, Tiantian ; Lin, Chao ; Li, Haifeng ; Jing, Luru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-d1737e49953d6fb9c5bb7938ebfbf4ed1f6690378ee6a2b4b4f4be51f1ab40373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>ATRP</topic><topic>Cerium(III)</topic><topic>Palygorskite</topic><topic>Surface graft modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jindong</creatorcontrib><creatorcontrib>Luo, Wenjun</creatorcontrib><creatorcontrib>Guo, Aifeng</creatorcontrib><creatorcontrib>Luo, Tiantian</creatorcontrib><creatorcontrib>Lin, Chao</creatorcontrib><creatorcontrib>Li, Haifeng</creatorcontrib><creatorcontrib>Jing, Luru</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jindong</au><au>Luo, Wenjun</au><au>Guo, Aifeng</au><au>Luo, Tiantian</au><au>Lin, Chao</au><au>Li, Haifeng</au><au>Jing, Luru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>512</volume><spage>657</spage><epage>664</epage><pages>657-664</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
A novel nanoscale adsorbing material, palygorskite (PGS) grafted polymethacrylic acid (PMAA) (PGS-g-PMAA), was successfully synthesized via atom-transfer radical-polymerization (ATRP). The grafting reaction was completed through a heterogeneous reaction in aqueous phase at normal temperature. Ce3+ was employed as a model to systematically investigate its adsorption performance. Meanwhile, the palygorskite was characterized by X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The results show that PGS-g-PMAA with abundant and highly accessible carboxyl groups demonstrated exceptional adsorption capacity to Ce3+. When pH is 7, temperature is 298.15 K, and the concentration of Ce3+ is 300 mg/g, the adsorption capacity reached the maximum (160.2 mg/g). PGS-g-PMAA shows a high adsorption rate, it reached adsorption equilibrium only after 40 min. In the premise of keeping the original structure of PGS, PMAA was bonded to its surface through the covalent bond, and the grafting ratio was only 15.4%. The adsorbability of PGS-g-PMAA indicated that the carboxylate-rich palygorskite composite is a promising adsorbent for removing the rare earth ions in aqueous solution. And this conclusion shows that ATRP method is an effective method for grafting functional polymer onto the surface of mineral in the aqueous phase.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2017.09.107</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2018-02, Vol.512, p.657-664 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_1961037303 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adsorption ATRP Cerium(III) Palygorskite Surface graft modification |
title | Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20a%20novel%20carboxylate-rich%20palygorskite%20as%20an%20adsorbent%20for%20Ce3+%20from%20aqueous%20solution&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Chen,%20Jindong&rft.date=2018-02-15&rft.volume=512&rft.spage=657&rft.epage=664&rft.pages=657-664&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2017.09.107&rft_dat=%3Cproquest_cross%3E1961037303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961037303&rft_id=info:pmid/&rft_els_id=S0021979717311451&rfr_iscdi=true |