Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio

Summary Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate‐reducing microbial community in a laboratory‐s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2017-12, Vol.19 (12), p.4965-4977
Hauptverfasser: Arshad, Arslan, Dalcin Martins, Paula, Frank, Jeroen, Jetten, Mike S. M., Op den Camp, Huub J. M., Welte, Cornelia U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4977
container_issue 12
container_start_page 4965
container_title Environmental microbiology
container_volume 19
creator Arshad, Arslan
Dalcin Martins, Paula
Frank, Jeroen
Jetten, Mike S. M.
Op den Camp, Huub J. M.
Welte, Cornelia U.
description Summary Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate‐reducing microbial community in a laboratory‐scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty‐three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87–89% 16S rRNA gene identity, 52–54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats.
doi_str_mv 10.1111/1462-2920.13977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1961037284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978158090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4127-777777f3dbeb13e4af3eff5b1cde6aa46bdcea2f46df357a42eeaf61858220973</originalsourceid><addsrcrecordid>eNqFkbtuFTEQhi0EIiFQ0yFLNDSH2N6Ld-lQFCBSAk2oV76MyQSvfbB3E07HI_AmvBNPgjcbTkHDyNJ4Rt_8Hvkn5Dlnr3mJY163YiN6Ucqql_IBOdx3Hu7vXByQJzlfM8ZlJdljclB6rBF1f0h-XeCI5iuGL7TkFDUqTzFMkJSZMIZM52Ah0YBTUhP8_vEzgZ3NwpsYLK4MBqqWE7-joRpjgjId0xsKIaG5GiFMNDoa4g14-rFIxbzFpIDqwkFCRS3mSYXJ72gCXx6ydIr08grSGC3k2bt4gzphfEoeOeUzPLvPR-Tzu9PLkw-b80_vz07enm9MzYXcyLtwldWgeQW1chU412huLLRK1a22BpRwdWtd1UhVCwDlWt41nRCsl9URebXqblP8NkOehhGzAe9VgDjngfctZ5UUXV3Ql_-g13FOoWxXKNnxpmM9K9TxSpVPzjmBG7YJR5V2A2fD4uWwuDUszg13XpaJF_e6sx7B7vm_5hWgWYFb9LD7n95wenG2Cv8BaZKvdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978158090</pqid></control><display><type>article</type><title>Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arshad, Arslan ; Dalcin Martins, Paula ; Frank, Jeroen ; Jetten, Mike S. M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</creator><creatorcontrib>Arshad, Arslan ; Dalcin Martins, Paula ; Frank, Jeroen ; Jetten, Mike S. M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</creatorcontrib><description>Summary Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate‐reducing microbial community in a laboratory‐scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty‐three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87–89% 16S rRNA gene identity, 52–54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13977</identifier><identifier>PMID: 29105249</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Sequence ; Amino acids ; Ammonia-oxidizing bacteria ; Ammonium ; Ammonium compounds ; Ammonium Compounds - metabolism ; Anoxia ; Anoxic sediments ; Archaea ; Archaea - genetics ; Archaea - metabolism ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Biogeochemical cycle ; Biogeochemical cycles ; Biogeochemistry ; Bioreactors ; Bioreactors - microbiology ; Candidatus Kuenenia stuttgartiensis ; Candidatus Methanoperedens ; Candidatus Methylomirabilis ; Candidatus Scalindua ; Carbon cycle ; Cycles ; Estuaries ; Estuarine dynamics ; Estuarine environments ; Genomes ; Guilds ; Interactions ; Methane ; Methane - metabolism ; Microbial Interactions ; Microorganisms ; Mimicry ; New family ; New species ; Nitrates ; Nitrates - metabolism ; Nitrites - metabolism ; Nitrogen ; Nitrospira ; Oxidation ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sediments ; Sulfide ; Sulfides ; Sulfides - metabolism ; Sulfur ; Sulphides ; Sulphur ; Thermodesulfobacteria ; Wastewater ; Wastewater treatment</subject><ispartof>Environmental microbiology, 2017-12, Vol.19 (12), p.4965-4977</ispartof><rights>2017 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2017 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4127-777777f3dbeb13e4af3eff5b1cde6aa46bdcea2f46df357a42eeaf61858220973</citedby><cites>FETCH-LOGICAL-c4127-777777f3dbeb13e4af3eff5b1cde6aa46bdcea2f46df357a42eeaf61858220973</cites><orcidid>0000-0002-1568-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13977$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13977$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29105249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arshad, Arslan</creatorcontrib><creatorcontrib>Dalcin Martins, Paula</creatorcontrib><creatorcontrib>Frank, Jeroen</creatorcontrib><creatorcontrib>Jetten, Mike S. M.</creatorcontrib><creatorcontrib>Op den Camp, Huub J. M.</creatorcontrib><creatorcontrib>Welte, Cornelia U.</creatorcontrib><title>Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate‐reducing microbial community in a laboratory‐scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty‐three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87–89% 16S rRNA gene identity, 52–54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Ammonium Compounds - metabolism</subject><subject>Anoxia</subject><subject>Anoxic sediments</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biogeochemical cycle</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Candidatus Kuenenia stuttgartiensis</subject><subject>Candidatus Methanoperedens</subject><subject>Candidatus Methylomirabilis</subject><subject>Candidatus Scalindua</subject><subject>Carbon cycle</subject><subject>Cycles</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Estuarine environments</subject><subject>Genomes</subject><subject>Guilds</subject><subject>Interactions</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Microbial Interactions</subject><subject>Microorganisms</subject><subject>Mimicry</subject><subject>New family</subject><subject>New species</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Nitrites - metabolism</subject><subject>Nitrogen</subject><subject>Nitrospira</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sediments</subject><subject>Sulfide</subject><subject>Sulfides</subject><subject>Sulfides - metabolism</subject><subject>Sulfur</subject><subject>Sulphides</subject><subject>Sulphur</subject><subject>Thermodesulfobacteria</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtuFTEQhi0EIiFQ0yFLNDSH2N6Ld-lQFCBSAk2oV76MyQSvfbB3E07HI_AmvBNPgjcbTkHDyNJ4Rt_8Hvkn5Dlnr3mJY163YiN6Ucqql_IBOdx3Hu7vXByQJzlfM8ZlJdljclB6rBF1f0h-XeCI5iuGL7TkFDUqTzFMkJSZMIZM52Ah0YBTUhP8_vEzgZ3NwpsYLK4MBqqWE7-joRpjgjId0xsKIaG5GiFMNDoa4g14-rFIxbzFpIDqwkFCRS3mSYXJ72gCXx6ydIr08grSGC3k2bt4gzphfEoeOeUzPLvPR-Tzu9PLkw-b80_vz07enm9MzYXcyLtwldWgeQW1chU412huLLRK1a22BpRwdWtd1UhVCwDlWt41nRCsl9URebXqblP8NkOehhGzAe9VgDjngfctZ5UUXV3Ql_-g13FOoWxXKNnxpmM9K9TxSpVPzjmBG7YJR5V2A2fD4uWwuDUszg13XpaJF_e6sx7B7vm_5hWgWYFb9LD7n95wenG2Cv8BaZKvdQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Arshad, Arslan</creator><creator>Dalcin Martins, Paula</creator><creator>Frank, Jeroen</creator><creator>Jetten, Mike S. M.</creator><creator>Op den Camp, Huub J. M.</creator><creator>Welte, Cornelia U.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1568-8878</orcidid></search><sort><creationdate>201712</creationdate><title>Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio</title><author>Arshad, Arslan ; Dalcin Martins, Paula ; Frank, Jeroen ; Jetten, Mike S. M. ; Op den Camp, Huub J. M. ; Welte, Cornelia U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4127-777777f3dbeb13e4af3eff5b1cde6aa46bdcea2f46df357a42eeaf61858220973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Ammonium Compounds - metabolism</topic><topic>Anoxia</topic><topic>Anoxic sediments</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biogeochemical cycle</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Candidatus Kuenenia stuttgartiensis</topic><topic>Candidatus Methanoperedens</topic><topic>Candidatus Methylomirabilis</topic><topic>Candidatus Scalindua</topic><topic>Carbon cycle</topic><topic>Cycles</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Estuarine environments</topic><topic>Genomes</topic><topic>Guilds</topic><topic>Interactions</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Microbial Interactions</topic><topic>Microorganisms</topic><topic>Mimicry</topic><topic>New family</topic><topic>New species</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Nitrites - metabolism</topic><topic>Nitrogen</topic><topic>Nitrospira</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sediments</topic><topic>Sulfide</topic><topic>Sulfides</topic><topic>Sulfides - metabolism</topic><topic>Sulfur</topic><topic>Sulphides</topic><topic>Sulphur</topic><topic>Thermodesulfobacteria</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arshad, Arslan</creatorcontrib><creatorcontrib>Dalcin Martins, Paula</creatorcontrib><creatorcontrib>Frank, Jeroen</creatorcontrib><creatorcontrib>Jetten, Mike S. M.</creatorcontrib><creatorcontrib>Op den Camp, Huub J. M.</creatorcontrib><creatorcontrib>Welte, Cornelia U.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arshad, Arslan</au><au>Dalcin Martins, Paula</au><au>Frank, Jeroen</au><au>Jetten, Mike S. M.</au><au>Op den Camp, Huub J. M.</au><au>Welte, Cornelia U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2017-12</date><risdate>2017</risdate><volume>19</volume><issue>12</issue><spage>4965</spage><epage>4977</epage><pages>4965-4977</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate‐reducing microbial community in a laboratory‐scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty‐three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87–89% 16S rRNA gene identity, 52–54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29105249</pmid><doi>10.1111/1462-2920.13977</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1568-8878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2017-12, Vol.19 (12), p.4965-4977
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1961037284
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Sequence
Amino acids
Ammonia-oxidizing bacteria
Ammonium
Ammonium compounds
Ammonium Compounds - metabolism
Anoxia
Anoxic sediments
Archaea
Archaea - genetics
Archaea - metabolism
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Biogeochemical cycle
Biogeochemical cycles
Biogeochemistry
Bioreactors
Bioreactors - microbiology
Candidatus Kuenenia stuttgartiensis
Candidatus Methanoperedens
Candidatus Methylomirabilis
Candidatus Scalindua
Carbon cycle
Cycles
Estuaries
Estuarine dynamics
Estuarine environments
Genomes
Guilds
Interactions
Methane
Methane - metabolism
Microbial Interactions
Microorganisms
Mimicry
New family
New species
Nitrates
Nitrates - metabolism
Nitrites - metabolism
Nitrogen
Nitrospira
Oxidation
Oxidation-Reduction
Phylogeny
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sediments
Sulfide
Sulfides
Sulfides - metabolism
Sulfur
Sulphides
Sulphur
Thermodesulfobacteria
Wastewater
Wastewater treatment
title Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mimicking%20microbial%20interactions%20under%20nitrate%E2%80%90reducing%20conditions%20in%20an%20anoxic%20bioreactor:%20enrichment%20of%20novel%20Nitrospirae%20bacteria%20distantly%20related%20to%20Thermodesulfovibrio&rft.jtitle=Environmental%20microbiology&rft.au=Arshad,%20Arslan&rft.date=2017-12&rft.volume=19&rft.issue=12&rft.spage=4965&rft.epage=4977&rft.pages=4965-4977&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13977&rft_dat=%3Cproquest_cross%3E1978158090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978158090&rft_id=info:pmid/29105249&rfr_iscdi=true