SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])

Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2008-01, Vol.47 (33), p.8504-8513
Hauptverfasser: Duncan, Caia DS, Weeks, Kevin M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8513
container_issue 33
container_start_page 8504
container_title Biochemistry (Easton)
container_volume 47
creator Duncan, Caia DS
Weeks, Kevin M
description Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.
doi_str_mv 10.1021/bi800207b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_19605372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19605372</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_196053723</originalsourceid><addsrcrecordid>eNqNj81Kw0AUhWehYP1Z-AZ3JbqoTtLa6DJI-gMqJXYnUm6Tm3FkcifOTYp5EZ_XCD6Aq8OBj_NxlDqP9HWk4-hmZ--0jnWyO1AjrfVsHN_P9JE6FvkY6lQn05H6flmm6wxSRteLFfAVPHo24xzZEKy4pYBFaz0L5LQndALZV0ssdk-AXMLmnULty56xtgU618M6UEUhUAlPVirvSssGLAPCPKCxjmARfNfA6nc-eIb8OQXpGgqXryUaQ-Ht6lQdVoOLzv7yRF3Ms83DctwE_9mRtNvaSkHOIZPvZBsNz24nSTz5N_gDLQdeGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19605372</pqid></control><display><type>article</type><title>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</title><source>ACS Publications</source><creator>Duncan, Caia DS ; Weeks, Kevin M</creator><creatorcontrib>Duncan, Caia DS ; Weeks, Kevin M</creatorcontrib><description>Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.</description><identifier>ISSN: 0006-2960</identifier><identifier>DOI: 10.1021/bi800207b</identifier><language>eng</language><ispartof>Biochemistry (Easton), 2008-01, Vol.47 (33), p.8504-8513</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Duncan, Caia DS</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><title>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</title><title>Biochemistry (Easton)</title><description>Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.</description><issn>0006-2960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNj81Kw0AUhWehYP1Z-AZ3JbqoTtLa6DJI-gMqJXYnUm6Tm3FkcifOTYp5EZ_XCD6Aq8OBj_NxlDqP9HWk4-hmZ--0jnWyO1AjrfVsHN_P9JE6FvkY6lQn05H6flmm6wxSRteLFfAVPHo24xzZEKy4pYBFaz0L5LQndALZV0ssdk-AXMLmnULty56xtgU618M6UEUhUAlPVirvSssGLAPCPKCxjmARfNfA6nc-eIb8OQXpGgqXryUaQ-Ht6lQdVoOLzv7yRF3Ms83DctwE_9mRtNvaSkHOIZPvZBsNz24nSTz5N_gDLQdeGw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Duncan, Caia DS</creator><creator>Weeks, Kevin M</creator><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20080101</creationdate><title>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</title><author>Duncan, Caia DS ; Weeks, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_196053723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Caia DS</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Caia DS</au><au>Weeks, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</atitle><jtitle>Biochemistry (Easton)</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>47</volume><issue>33</issue><spage>8504</spage><epage>8513</epage><pages>8504-8513</pages><issn>0006-2960</issn><abstract>Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.</abstract><doi>10.1021/bi800207b</doi></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2008-01, Vol.47 (33), p.8504-8513
issn 0006-2960
language eng
recordid cdi_proquest_miscellaneous_19605372
source ACS Publications
title SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHAPE%20Analysis%20of%20Long-Range%20Interactions%20Reveals%20Extensive%20and%20Thermodynamically%20Preferred%20Misfolding%20in%20a%20Fragile%20Group%20I%20Intron%20RNA%20super(%5Bdagger%5D)&rft.jtitle=Biochemistry%20(Easton)&rft.au=Duncan,%20Caia%20DS&rft.date=2008-01-01&rft.volume=47&rft.issue=33&rft.spage=8504&rft.epage=8513&rft.pages=8504-8513&rft.issn=0006-2960&rft_id=info:doi/10.1021/bi800207b&rft_dat=%3Cproquest%3E19605372%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19605372&rft_id=info:pmid/&rfr_iscdi=true