SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])
Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed b...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2008-01, Vol.47 (33), p.8504-8513 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8513 |
---|---|
container_issue | 33 |
container_start_page | 8504 |
container_title | Biochemistry (Easton) |
container_volume | 47 |
creator | Duncan, Caia DS Weeks, Kevin M |
description | Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure. |
doi_str_mv | 10.1021/bi800207b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_19605372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19605372</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_196053723</originalsourceid><addsrcrecordid>eNqNj81Kw0AUhWehYP1Z-AZ3JbqoTtLa6DJI-gMqJXYnUm6Tm3FkcifOTYp5EZ_XCD6Aq8OBj_NxlDqP9HWk4-hmZ--0jnWyO1AjrfVsHN_P9JE6FvkY6lQn05H6flmm6wxSRteLFfAVPHo24xzZEKy4pYBFaz0L5LQndALZV0ssdk-AXMLmnULty56xtgU618M6UEUhUAlPVirvSssGLAPCPKCxjmARfNfA6nc-eIb8OQXpGgqXryUaQ-Ht6lQdVoOLzv7yRF3Ms83DctwE_9mRtNvaSkHOIZPvZBsNz24nSTz5N_gDLQdeGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19605372</pqid></control><display><type>article</type><title>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</title><source>ACS Publications</source><creator>Duncan, Caia DS ; Weeks, Kevin M</creator><creatorcontrib>Duncan, Caia DS ; Weeks, Kevin M</creatorcontrib><description>Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.</description><identifier>ISSN: 0006-2960</identifier><identifier>DOI: 10.1021/bi800207b</identifier><language>eng</language><ispartof>Biochemistry (Easton), 2008-01, Vol.47 (33), p.8504-8513</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Duncan, Caia DS</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><title>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</title><title>Biochemistry (Easton)</title><description>Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.</description><issn>0006-2960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNj81Kw0AUhWehYP1Z-AZ3JbqoTtLa6DJI-gMqJXYnUm6Tm3FkcifOTYp5EZ_XCD6Aq8OBj_NxlDqP9HWk4-hmZ--0jnWyO1AjrfVsHN_P9JE6FvkY6lQn05H6flmm6wxSRteLFfAVPHo24xzZEKy4pYBFaz0L5LQndALZV0ssdk-AXMLmnULty56xtgU618M6UEUhUAlPVirvSssGLAPCPKCxjmARfNfA6nc-eIb8OQXpGgqXryUaQ-Ht6lQdVoOLzv7yRF3Ms83DctwE_9mRtNvaSkHOIZPvZBsNz24nSTz5N_gDLQdeGw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Duncan, Caia DS</creator><creator>Weeks, Kevin M</creator><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20080101</creationdate><title>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</title><author>Duncan, Caia DS ; Weeks, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_196053723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duncan, Caia DS</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duncan, Caia DS</au><au>Weeks, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger])</atitle><jtitle>Biochemistry (Easton)</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>47</volume><issue>33</issue><spage>8504</spage><epage>8513</epage><pages>8504-8513</pages><issn>0006-2960</issn><abstract>Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.</abstract><doi>10.1021/bi800207b</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2008-01, Vol.47 (33), p.8504-8513 |
issn | 0006-2960 |
language | eng |
recordid | cdi_proquest_miscellaneous_19605372 |
source | ACS Publications |
title | SHAPE Analysis of Long-Range Interactions Reveals Extensive and Thermodynamically Preferred Misfolding in a Fragile Group I Intron RNA super([dagger]) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHAPE%20Analysis%20of%20Long-Range%20Interactions%20Reveals%20Extensive%20and%20Thermodynamically%20Preferred%20Misfolding%20in%20a%20Fragile%20Group%20I%20Intron%20RNA%20super(%5Bdagger%5D)&rft.jtitle=Biochemistry%20(Easton)&rft.au=Duncan,%20Caia%20DS&rft.date=2008-01-01&rft.volume=47&rft.issue=33&rft.spage=8504&rft.epage=8513&rft.pages=8504-8513&rft.issn=0006-2960&rft_id=info:doi/10.1021/bi800207b&rft_dat=%3Cproquest%3E19605372%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19605372&rft_id=info:pmid/&rfr_iscdi=true |