Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water
The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtaine...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-11, Vol.51 (22), p.13363-13371 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13371 |
---|---|
container_issue | 22 |
container_start_page | 13363 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Zhang, Xiaolin Zhang, Lu Li, Zhixian Jiang, Zhao Zheng, Qi Lin, Bin Pan, Bingcai |
description | The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard ( |
doi_str_mv | 10.1021/acs.est.7b04164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1959328003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982175050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-cea5f9b901b1690c4dd121acdb2aa59ba2520873382b614f0669c5e57c6a341f3</originalsourceid><addsrcrecordid>eNp1kcFrFDEUxoModls9e5OAl0KZ7XvJZHZyLLVVobayKnob3mSSmjozWZMZof-9WXZVKPSUy-_7PfJ9jL1CWCIIPCWTljZNy1ULJVblE7ZAJaBQtcKnbAGAstCy-n7ADlO6AwAhoX7ODoQGjSXWC_ZzTZMPI_X8rU3-duTB8bNx8i7MvR9v-afQ3w82esOvaQwmDJuQ_GS5C5F_ntNEfqS2t_yyn0P0neVrO4TfWediGPj1zcdi7c0P_o0mG1-wZ476ZF_u3yP29fLiy_n74urm3Yfzs6uCpK6nwlhSTrcasMVKgym7DgWS6VpBpHRLIn-xXklZi7bC0kFVaaOsWpmKZIlOHrHjnXcTw68519MMPhnb9zTaMKcGtdJS1AAyo28eoHdhjrmOLVULXClQkKnTHWViSCla12yiHyjeNwjNdocm79Bs0_sdcuL13ju3g-3-8X-Lz8DJDtgm_998RPcHF1WTRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982175050</pqid></control><display><type>article</type><title>Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Xiaolin ; Zhang, Lu ; Li, Zhixian ; Jiang, Zhao ; Zheng, Qi ; Lin, Bin ; Pan, Bingcai</creator><creatorcontrib>Zhang, Xiaolin ; Zhang, Lu ; Li, Zhixian ; Jiang, Zhao ; Zheng, Qi ; Lin, Bin ; Pan, Bingcai</creatorcontrib><description>The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard (<1.5 mg F/L), whereas HCA and HZO@D201 columns could only generate <5 and ∼40 BV effluents, respectively. This study is believed to shed new light on how to rationally design antifouling nanocomposites for water remediation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b04164</identifier><identifier>PMID: 29091418</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Adsorptivity ; Ammonium ; Anion exchanging ; Antifouling ; Antifouling substances ; Binding ; Crosslinking ; Dissolved organic carbon ; Drinking water ; Effluents ; Fluorides ; Groundwater ; Humic acids ; Nanocomposites ; Nanoparticles ; Organic matter ; Pollutant removal ; Pollutants ; Polymers ; Polystyrene ; Polystyrene resins ; Sustainability ; Water ; Water Pollutants, Chemical ; Water pollution ; Water Purification ; Water treatment ; Zirconium ; Zirconium oxides</subject><ispartof>Environmental science & technology, 2017-11, Vol.51 (22), p.13363-13371</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-cea5f9b901b1690c4dd121acdb2aa59ba2520873382b614f0669c5e57c6a341f3</citedby><cites>FETCH-LOGICAL-a398t-cea5f9b901b1690c4dd121acdb2aa59ba2520873382b614f0669c5e57c6a341f3</cites><orcidid>0000-0002-2465-5912 ; 0000-0003-3626-1539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b04164$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b04164$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29091418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaolin</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Li, Zhixian</creatorcontrib><creatorcontrib>Jiang, Zhao</creatorcontrib><creatorcontrib>Zheng, Qi</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><creatorcontrib>Pan, Bingcai</creatorcontrib><title>Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard (<1.5 mg F/L), whereas HCA and HZO@D201 columns could only generate <5 and ∼40 BV effluents, respectively. This study is believed to shed new light on how to rationally design antifouling nanocomposites for water remediation.</description><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>Ammonium</subject><subject>Anion exchanging</subject><subject>Antifouling</subject><subject>Antifouling substances</subject><subject>Binding</subject><subject>Crosslinking</subject><subject>Dissolved organic carbon</subject><subject>Drinking water</subject><subject>Effluents</subject><subject>Fluorides</subject><subject>Groundwater</subject><subject>Humic acids</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic matter</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Polymers</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Sustainability</subject><subject>Water</subject><subject>Water Pollutants, Chemical</subject><subject>Water pollution</subject><subject>Water Purification</subject><subject>Water treatment</subject><subject>Zirconium</subject><subject>Zirconium oxides</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFrFDEUxoModls9e5OAl0KZ7XvJZHZyLLVVobayKnob3mSSmjozWZMZof-9WXZVKPSUy-_7PfJ9jL1CWCIIPCWTljZNy1ULJVblE7ZAJaBQtcKnbAGAstCy-n7ADlO6AwAhoX7ODoQGjSXWC_ZzTZMPI_X8rU3-duTB8bNx8i7MvR9v-afQ3w82esOvaQwmDJuQ_GS5C5F_ntNEfqS2t_yyn0P0neVrO4TfWediGPj1zcdi7c0P_o0mG1-wZ476ZF_u3yP29fLiy_n74urm3Yfzs6uCpK6nwlhSTrcasMVKgym7DgWS6VpBpHRLIn-xXklZi7bC0kFVaaOsWpmKZIlOHrHjnXcTw68519MMPhnb9zTaMKcGtdJS1AAyo28eoHdhjrmOLVULXClQkKnTHWViSCla12yiHyjeNwjNdocm79Bs0_sdcuL13ju3g-3-8X-Lz8DJDtgm_998RPcHF1WTRA</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Zhang, Xiaolin</creator><creator>Zhang, Lu</creator><creator>Li, Zhixian</creator><creator>Jiang, Zhao</creator><creator>Zheng, Qi</creator><creator>Lin, Bin</creator><creator>Pan, Bingcai</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2465-5912</orcidid><orcidid>https://orcid.org/0000-0003-3626-1539</orcidid></search><sort><creationdate>20171121</creationdate><title>Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water</title><author>Zhang, Xiaolin ; Zhang, Lu ; Li, Zhixian ; Jiang, Zhao ; Zheng, Qi ; Lin, Bin ; Pan, Bingcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-cea5f9b901b1690c4dd121acdb2aa59ba2520873382b614f0669c5e57c6a341f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>Ammonium</topic><topic>Anion exchanging</topic><topic>Antifouling</topic><topic>Antifouling substances</topic><topic>Binding</topic><topic>Crosslinking</topic><topic>Dissolved organic carbon</topic><topic>Drinking water</topic><topic>Effluents</topic><topic>Fluorides</topic><topic>Groundwater</topic><topic>Humic acids</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic matter</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Polymers</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Sustainability</topic><topic>Water</topic><topic>Water Pollutants, Chemical</topic><topic>Water pollution</topic><topic>Water Purification</topic><topic>Water treatment</topic><topic>Zirconium</topic><topic>Zirconium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaolin</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Li, Zhixian</creatorcontrib><creatorcontrib>Jiang, Zhao</creatorcontrib><creatorcontrib>Zheng, Qi</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><creatorcontrib>Pan, Bingcai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaolin</au><au>Zhang, Lu</au><au>Li, Zhixian</au><au>Jiang, Zhao</au><au>Zheng, Qi</au><au>Lin, Bin</au><au>Pan, Bingcai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-11-21</date><risdate>2017</risdate><volume>51</volume><issue>22</issue><spage>13363</spage><epage>13371</epage><pages>13363-13371</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The presence of natural organic matter (NOM) exerts adverse effects on adsorptive removal of various pollutants including fluoride from water. Herein, we designed a novel nanocomposite adsorbent for preferable and sustainable defluoridation from NOM-rich water. The nanocomposite (HZO@HCA) is obtained by encapsulating hydrous zirconium oxide nanoparticles (HZO NPs) inside hyper-cross-linked polystyrene anion exchanger (HCA) binding tertiary amine groups. Another commercially available nanocomposite HZO@D201, with the host of a cross-linked polystyrene anion exchanger (D201) binding ammonium groups, was involved for comparison. HZO@HCA features with abundant micropores instead of meso-/macropores of HZO@D201, resulting in the inaccessible sites for NOM due to the size exclusion. Also, the tertiary amine groups of HCA favor an efficient desorption of the slightly loaded NOM from HZO@HCA. As expected, Sigma-Aldrich humic acid even at 20 mg of DOC/L did not exert any observable effect on fluoride sequestration by HZO@HCA, whereas a significant inhibition was observed for HZO@D201. Cyclic adsorption runs further verified the superior reusability of HZO@HCA for defluoridation from NOM-rich water. In addition, the HZO@HCA column could generate ∼80 bed volume (BV) effluent from a synthetic fluoride-containing groundwater to meet the drinking water standard (<1.5 mg F/L), whereas HCA and HZO@D201 columns could only generate <5 and ∼40 BV effluents, respectively. This study is believed to shed new light on how to rationally design antifouling nanocomposites for water remediation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29091418</pmid><doi>10.1021/acs.est.7b04164</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2465-5912</orcidid><orcidid>https://orcid.org/0000-0003-3626-1539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-11, Vol.51 (22), p.13363-13371 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1959328003 |
source | MEDLINE; ACS Publications |
subjects | Adsorption Adsorptivity Ammonium Anion exchanging Antifouling Antifouling substances Binding Crosslinking Dissolved organic carbon Drinking water Effluents Fluorides Groundwater Humic acids Nanocomposites Nanoparticles Organic matter Pollutant removal Pollutants Polymers Polystyrene Polystyrene resins Sustainability Water Water Pollutants, Chemical Water pollution Water Purification Water treatment Zirconium Zirconium oxides |
title | Rational Design of Antifouling Polymeric Nanocomposite for Sustainable Fluoride Removal from NOM-Rich Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Antifouling%20Polymeric%20Nanocomposite%20for%20Sustainable%20Fluoride%20Removal%20from%20NOM-Rich%20Water&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhang,%20Xiaolin&rft.date=2017-11-21&rft.volume=51&rft.issue=22&rft.spage=13363&rft.epage=13371&rft.pages=13363-13371&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b04164&rft_dat=%3Cproquest_cross%3E1982175050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982175050&rft_id=info:pmid/29091418&rfr_iscdi=true |