Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap

Here the authors provide an extension to their earlier RNA interactome capture protocol. This Protocol Extension describes RBDmap—a method to identify the regions of RNA-binding proteins engaged in native interactions with RNA, in a proteome-wide manner. This protocol is an extension to: Nat. Protoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2017-12, Vol.12 (12), p.2447-2464
Hauptverfasser: Castello, Alfredo, Frese, Christian K., Fischer, Bernd, Järvelin, Aino I, Horos, Rastislav, Alleaume, Anne-Marie, Foehr, Sophia, Curk, Tomaz, Krijgsveld, Jeroen, Hentze, Matthias W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2464
container_issue 12
container_start_page 2447
container_title Nature protocols
container_volume 12
creator Castello, Alfredo
Frese, Christian K.
Fischer, Bernd
Järvelin, Aino I
Horos, Rastislav
Alleaume, Anne-Marie
Foehr, Sophia
Curk, Tomaz
Krijgsveld, Jeroen
Hentze, Matthias W
description Here the authors provide an extension to their earlier RNA interactome capture protocol. This Protocol Extension describes RBDmap—a method to identify the regions of RNA-binding proteins engaged in native interactions with RNA, in a proteome-wide manner. This protocol is an extension to: Nat. Protoc.8, 491–500 (2013); doi:10.1038/nprot.2013.020; published online 14 February 2013 RBDmap is a method for identifying, in a proteome-wide manner, the regions of RNA-binding proteins (RBPs) engaged in native interactions with RNA. In brief, cells are irradiated with UV light to induce protein–RNA cross-links. Following stringent denaturing washes, the resulting covalently linked protein–RNA complexes are purified with oligo(dT) magnetic beads. After elution, RBPs are subjected to partial proteolysis, in which the protein regions still bound to the RNA and those released to the supernatant are separated by a second oligo(dT) selection. After sample preparation and mass-spectrometric analysis, peptide intensity ratios between the RNA-bound and released fractions are used to determine the RNA-binding regions. As a Protocol Extension, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol (for the RNA interactome capture method) describes how to identify the active RBPs in cultured cells, whereas this Protocol Extension also enables the identification of the RNA-binding domains of RBPs. The experimental workflow takes 1 week plus 2 additional weeks for proteomics and data analysis. Notably, RBDmap presents numerous advantages over classic methods for determining RNA-binding domains: it produces proteome-wide, high-resolution maps of the protein regions contacting the RNA in a physiological context and can be adapted to different biological systems and conditions. Because RBDmap relies on the isolation of polyadenylated RNA via oligo(dT), it will not provide RNA-binding information on proteins interacting exclusively with nonpolyadenylated transcripts. Applied to HeLa cells, RBDmap uncovered 1,174 RNA-binding sites in 529 proteins, many of which were previously unknown.
doi_str_mv 10.1038/nprot.2017.106
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1959324348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A521377396</galeid><sourcerecordid>A521377396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-5649fd7819a81dd2b0dfd6c9a5a551ee2ff154f9d47d236f466065e1e5b691593</originalsourceid><addsrcrecordid>eNp9kktvEzEUhUcIREthyxJZYgOLSf12vAzlFakCKcDacsbXwdWMJ9gelf57PG15tIqQF_a9_s59SKdpnhO8IJgtT-M-jWVBMVE1lg-aY6IEbqnS-uH1m7eULPVR8yTnC4y5YlI9bo6oxlpwTo6btHYQS_ChsyWMEY0ebT6t2m2ILsQdcuNgQ8z303NTmPMhom7qy5TAoQ76vpIRWZSvcoGhvQwOUO5sD-gylO9o8-btYPdPm0fe9hme3d4nzbf3776efWzPP39Yn63O204wWlohufZOLYm2S-Ic3WLnney0FVYIAkC9J4J77bhylEnPpcRSAAGxlZoIzU6aVzd167Q_JsjFDCHPQ9oI45QN0RWinPFlRV_eQy_GKcU6naFCSsIFp-p_FNGSEK6ZYn-pXd3bhOjHkmw3tzYrQQlTimlZqcUBqh4HQ-jGCD7U_B3B6zuCyhT4WXZ2ytmsv2wOFu_SmHMCb_YpDDZdGYLNbBtzbRsz26bGs-DF7WbTdgD3B__tkwqc3gC5fsUdpH9WP1zyF4z2ymg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961149373</pqid></control><display><type>article</type><title>Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Castello, Alfredo ; Frese, Christian K. ; Fischer, Bernd ; Järvelin, Aino I ; Horos, Rastislav ; Alleaume, Anne-Marie ; Foehr, Sophia ; Curk, Tomaz ; Krijgsveld, Jeroen ; Hentze, Matthias W</creator><creatorcontrib>Castello, Alfredo ; Frese, Christian K. ; Fischer, Bernd ; Järvelin, Aino I ; Horos, Rastislav ; Alleaume, Anne-Marie ; Foehr, Sophia ; Curk, Tomaz ; Krijgsveld, Jeroen ; Hentze, Matthias W</creatorcontrib><description>Here the authors provide an extension to their earlier RNA interactome capture protocol. This Protocol Extension describes RBDmap—a method to identify the regions of RNA-binding proteins engaged in native interactions with RNA, in a proteome-wide manner. This protocol is an extension to: Nat. Protoc.8, 491–500 (2013); doi:10.1038/nprot.2013.020; published online 14 February 2013 RBDmap is a method for identifying, in a proteome-wide manner, the regions of RNA-binding proteins (RBPs) engaged in native interactions with RNA. In brief, cells are irradiated with UV light to induce protein–RNA cross-links. Following stringent denaturing washes, the resulting covalently linked protein–RNA complexes are purified with oligo(dT) magnetic beads. After elution, RBPs are subjected to partial proteolysis, in which the protein regions still bound to the RNA and those released to the supernatant are separated by a second oligo(dT) selection. After sample preparation and mass-spectrometric analysis, peptide intensity ratios between the RNA-bound and released fractions are used to determine the RNA-binding regions. As a Protocol Extension, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol (for the RNA interactome capture method) describes how to identify the active RBPs in cultured cells, whereas this Protocol Extension also enables the identification of the RNA-binding domains of RBPs. The experimental workflow takes 1 week plus 2 additional weeks for proteomics and data analysis. Notably, RBDmap presents numerous advantages over classic methods for determining RNA-binding domains: it produces proteome-wide, high-resolution maps of the protein regions contacting the RNA in a physiological context and can be adapted to different biological systems and conditions. Because RBDmap relies on the isolation of polyadenylated RNA via oligo(dT), it will not provide RNA-binding information on proteins interacting exclusively with nonpolyadenylated transcripts. Applied to HeLa cells, RBDmap uncovered 1,174 RNA-binding sites in 529 proteins, many of which were previously unknown.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2017.106</identifier><identifier>PMID: 29095441</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/296 ; 631/337/1645 ; 631/337/475 ; 631/45/612/1230 ; Algorithms ; Analytical Chemistry ; Beads ; Binding proteins ; Binding Sites ; Biological Techniques ; Computational Biology/Bioinformatics ; Crosslinking ; Data analysis ; Data processing ; Elution ; Gene Expression ; HeLa Cells ; Humans ; Identification and classification ; Identification methods ; Life Sciences ; Mass Spectrometry ; Methods ; Microarrays ; Oligodeoxyribonucleotides - chemistry ; Organic Chemistry ; Polyadenylation ; Protein Binding ; Proteins ; Proteolysis ; Proteomes ; Proteomics ; Proteomics - instrumentation ; Proteomics - methods ; protocol-extension ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA-Binding Motifs ; RNA-binding protein ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - isolation &amp; purification ; Sample preparation ; Spectrometry ; Ultraviolet radiation ; Ultraviolet Rays ; Workflow</subject><ispartof>Nature protocols, 2017-12, Vol.12 (12), p.2447-2464</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2017</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-5649fd7819a81dd2b0dfd6c9a5a551ee2ff154f9d47d236f466065e1e5b691593</citedby><cites>FETCH-LOGICAL-c532t-5649fd7819a81dd2b0dfd6c9a5a551ee2ff154f9d47d236f466065e1e5b691593</cites><orcidid>0000-0003-4888-7256 ; 0000-0002-1499-4662 ; 0000-0001-9437-2099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29095441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castello, Alfredo</creatorcontrib><creatorcontrib>Frese, Christian K.</creatorcontrib><creatorcontrib>Fischer, Bernd</creatorcontrib><creatorcontrib>Järvelin, Aino I</creatorcontrib><creatorcontrib>Horos, Rastislav</creatorcontrib><creatorcontrib>Alleaume, Anne-Marie</creatorcontrib><creatorcontrib>Foehr, Sophia</creatorcontrib><creatorcontrib>Curk, Tomaz</creatorcontrib><creatorcontrib>Krijgsveld, Jeroen</creatorcontrib><creatorcontrib>Hentze, Matthias W</creatorcontrib><title>Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Here the authors provide an extension to their earlier RNA interactome capture protocol. This Protocol Extension describes RBDmap—a method to identify the regions of RNA-binding proteins engaged in native interactions with RNA, in a proteome-wide manner. This protocol is an extension to: Nat. Protoc.8, 491–500 (2013); doi:10.1038/nprot.2013.020; published online 14 February 2013 RBDmap is a method for identifying, in a proteome-wide manner, the regions of RNA-binding proteins (RBPs) engaged in native interactions with RNA. In brief, cells are irradiated with UV light to induce protein–RNA cross-links. Following stringent denaturing washes, the resulting covalently linked protein–RNA complexes are purified with oligo(dT) magnetic beads. After elution, RBPs are subjected to partial proteolysis, in which the protein regions still bound to the RNA and those released to the supernatant are separated by a second oligo(dT) selection. After sample preparation and mass-spectrometric analysis, peptide intensity ratios between the RNA-bound and released fractions are used to determine the RNA-binding regions. As a Protocol Extension, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol (for the RNA interactome capture method) describes how to identify the active RBPs in cultured cells, whereas this Protocol Extension also enables the identification of the RNA-binding domains of RBPs. The experimental workflow takes 1 week plus 2 additional weeks for proteomics and data analysis. Notably, RBDmap presents numerous advantages over classic methods for determining RNA-binding domains: it produces proteome-wide, high-resolution maps of the protein regions contacting the RNA in a physiological context and can be adapted to different biological systems and conditions. Because RBDmap relies on the isolation of polyadenylated RNA via oligo(dT), it will not provide RNA-binding information on proteins interacting exclusively with nonpolyadenylated transcripts. Applied to HeLa cells, RBDmap uncovered 1,174 RNA-binding sites in 529 proteins, many of which were previously unknown.</description><subject>631/1647/296</subject><subject>631/337/1645</subject><subject>631/337/475</subject><subject>631/45/612/1230</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Beads</subject><subject>Binding proteins</subject><subject>Binding Sites</subject><subject>Biological Techniques</subject><subject>Computational Biology/Bioinformatics</subject><subject>Crosslinking</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Elution</subject><subject>Gene Expression</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Identification methods</subject><subject>Life Sciences</subject><subject>Mass Spectrometry</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>Organic Chemistry</subject><subject>Polyadenylation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - instrumentation</subject><subject>Proteomics - methods</subject><subject>protocol-extension</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Motifs</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - isolation &amp; purification</subject><subject>Sample preparation</subject><subject>Spectrometry</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Workflow</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kktvEzEUhUcIREthyxJZYgOLSf12vAzlFakCKcDacsbXwdWMJ9gelf57PG15tIqQF_a9_s59SKdpnhO8IJgtT-M-jWVBMVE1lg-aY6IEbqnS-uH1m7eULPVR8yTnC4y5YlI9bo6oxlpwTo6btHYQS_ChsyWMEY0ebT6t2m2ILsQdcuNgQ8z303NTmPMhom7qy5TAoQ76vpIRWZSvcoGhvQwOUO5sD-gylO9o8-btYPdPm0fe9hme3d4nzbf3776efWzPP39Yn63O204wWlohufZOLYm2S-Ic3WLnney0FVYIAkC9J4J77bhylEnPpcRSAAGxlZoIzU6aVzd167Q_JsjFDCHPQ9oI45QN0RWinPFlRV_eQy_GKcU6naFCSsIFp-p_FNGSEK6ZYn-pXd3bhOjHkmw3tzYrQQlTimlZqcUBqh4HQ-jGCD7U_B3B6zuCyhT4WXZ2ytmsv2wOFu_SmHMCb_YpDDZdGYLNbBtzbRsz26bGs-DF7WbTdgD3B__tkwqc3gC5fsUdpH9WP1zyF4z2ymg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Castello, Alfredo</creator><creator>Frese, Christian K.</creator><creator>Fischer, Bernd</creator><creator>Järvelin, Aino I</creator><creator>Horos, Rastislav</creator><creator>Alleaume, Anne-Marie</creator><creator>Foehr, Sophia</creator><creator>Curk, Tomaz</creator><creator>Krijgsveld, Jeroen</creator><creator>Hentze, Matthias W</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4888-7256</orcidid><orcidid>https://orcid.org/0000-0002-1499-4662</orcidid><orcidid>https://orcid.org/0000-0001-9437-2099</orcidid></search><sort><creationdate>20171201</creationdate><title>Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap</title><author>Castello, Alfredo ; Frese, Christian K. ; Fischer, Bernd ; Järvelin, Aino I ; Horos, Rastislav ; Alleaume, Anne-Marie ; Foehr, Sophia ; Curk, Tomaz ; Krijgsveld, Jeroen ; Hentze, Matthias W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-5649fd7819a81dd2b0dfd6c9a5a551ee2ff154f9d47d236f466065e1e5b691593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/296</topic><topic>631/337/1645</topic><topic>631/337/475</topic><topic>631/45/612/1230</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Beads</topic><topic>Binding proteins</topic><topic>Binding Sites</topic><topic>Biological Techniques</topic><topic>Computational Biology/Bioinformatics</topic><topic>Crosslinking</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Elution</topic><topic>Gene Expression</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Identification methods</topic><topic>Life Sciences</topic><topic>Mass Spectrometry</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>Organic Chemistry</topic><topic>Polyadenylation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - instrumentation</topic><topic>Proteomics - methods</topic><topic>protocol-extension</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Motifs</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - isolation &amp; purification</topic><topic>Sample preparation</topic><topic>Spectrometry</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castello, Alfredo</creatorcontrib><creatorcontrib>Frese, Christian K.</creatorcontrib><creatorcontrib>Fischer, Bernd</creatorcontrib><creatorcontrib>Järvelin, Aino I</creatorcontrib><creatorcontrib>Horos, Rastislav</creatorcontrib><creatorcontrib>Alleaume, Anne-Marie</creatorcontrib><creatorcontrib>Foehr, Sophia</creatorcontrib><creatorcontrib>Curk, Tomaz</creatorcontrib><creatorcontrib>Krijgsveld, Jeroen</creatorcontrib><creatorcontrib>Hentze, Matthias W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castello, Alfredo</au><au>Frese, Christian K.</au><au>Fischer, Bernd</au><au>Järvelin, Aino I</au><au>Horos, Rastislav</au><au>Alleaume, Anne-Marie</au><au>Foehr, Sophia</au><au>Curk, Tomaz</au><au>Krijgsveld, Jeroen</au><au>Hentze, Matthias W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>12</volume><issue>12</issue><spage>2447</spage><epage>2464</epage><pages>2447-2464</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>Here the authors provide an extension to their earlier RNA interactome capture protocol. This Protocol Extension describes RBDmap—a method to identify the regions of RNA-binding proteins engaged in native interactions with RNA, in a proteome-wide manner. This protocol is an extension to: Nat. Protoc.8, 491–500 (2013); doi:10.1038/nprot.2013.020; published online 14 February 2013 RBDmap is a method for identifying, in a proteome-wide manner, the regions of RNA-binding proteins (RBPs) engaged in native interactions with RNA. In brief, cells are irradiated with UV light to induce protein–RNA cross-links. Following stringent denaturing washes, the resulting covalently linked protein–RNA complexes are purified with oligo(dT) magnetic beads. After elution, RBPs are subjected to partial proteolysis, in which the protein regions still bound to the RNA and those released to the supernatant are separated by a second oligo(dT) selection. After sample preparation and mass-spectrometric analysis, peptide intensity ratios between the RNA-bound and released fractions are used to determine the RNA-binding regions. As a Protocol Extension, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol (for the RNA interactome capture method) describes how to identify the active RBPs in cultured cells, whereas this Protocol Extension also enables the identification of the RNA-binding domains of RBPs. The experimental workflow takes 1 week plus 2 additional weeks for proteomics and data analysis. Notably, RBDmap presents numerous advantages over classic methods for determining RNA-binding domains: it produces proteome-wide, high-resolution maps of the protein regions contacting the RNA in a physiological context and can be adapted to different biological systems and conditions. Because RBDmap relies on the isolation of polyadenylated RNA via oligo(dT), it will not provide RNA-binding information on proteins interacting exclusively with nonpolyadenylated transcripts. Applied to HeLa cells, RBDmap uncovered 1,174 RNA-binding sites in 529 proteins, many of which were previously unknown.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29095441</pmid><doi>10.1038/nprot.2017.106</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4888-7256</orcidid><orcidid>https://orcid.org/0000-0002-1499-4662</orcidid><orcidid>https://orcid.org/0000-0001-9437-2099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2017-12, Vol.12 (12), p.2447-2464
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_1959324348
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/1647/296
631/337/1645
631/337/475
631/45/612/1230
Algorithms
Analytical Chemistry
Beads
Binding proteins
Binding Sites
Biological Techniques
Computational Biology/Bioinformatics
Crosslinking
Data analysis
Data processing
Elution
Gene Expression
HeLa Cells
Humans
Identification and classification
Identification methods
Life Sciences
Mass Spectrometry
Methods
Microarrays
Oligodeoxyribonucleotides - chemistry
Organic Chemistry
Polyadenylation
Protein Binding
Proteins
Proteolysis
Proteomes
Proteomics
Proteomics - instrumentation
Proteomics - methods
protocol-extension
Ribonucleic acid
RNA
RNA sequencing
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-Binding Motifs
RNA-binding protein
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - isolation & purification
Sample preparation
Spectrometry
Ultraviolet radiation
Ultraviolet Rays
Workflow
title Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20RNA-binding%20domains%20of%20RNA-binding%20proteins%20in%20cultured%20cells%20on%20a%20system-wide%20scale%20with%20RBDmap&rft.jtitle=Nature%20protocols&rft.au=Castello,%20Alfredo&rft.date=2017-12-01&rft.volume=12&rft.issue=12&rft.spage=2447&rft.epage=2464&rft.pages=2447-2464&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2017.106&rft_dat=%3Cgale_proqu%3EA521377396%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961149373&rft_id=info:pmid/29095441&rft_galeid=A521377396&rfr_iscdi=true