Modeling descending carbon dioxide injections in the ocean
An integral double plume model is used to explore the fate of solid CO2 hydrate particles released continuously into a quiescent ocean for the purposes of CO2 sequestration. Such a release is desirable because hydrate particles are negatively buoyant and dissolution of CO2 enhances this negative buo...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic research 2006-01, Vol.44 (3), p.324-337 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 3 |
container_start_page | 324 |
container_title | Journal of hydraulic research |
container_volume | 44 |
creator | Wannamaker, Eric J. Adams, E. Eric |
description | An integral double plume model is used to explore the fate of solid CO2 hydrate particles released continuously into a quiescent ocean for the purposes of CO2 sequestration. Such a release is desirable because hydrate particles are negatively buoyant and dissolution of CO2 enhances this negative buoyancy through the solute density effect. Plume depth and thickness are shown to increase with CO2 mass loading and initial hydrate particle diameter, and exceed the equivalent rise height and thickness associated with positively buoyant droplet releases. The depths also greatly exceed those associated with a single particle release, highlighting the importance of the "plume" effect. Plumes initially composed of multiple particle sizes produce greater maximum plume depth, but similar average plume depth and dilution compared with plumes composed of homogeneous particles, suggesting that adequate simulations can be made using a single particle size. Although the model is valid only for discharge to quiescent receiving water, analysis shows the effects of an ambient current decrease with increasing mass flow rate or decreasing particle size, making results relevant for most likely release scenarios. |
doi_str_mv | 10.1080/00221686.2006.9521685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19588941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29356559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-9be814b7b58b438d296ee4bc7655fd1c826197cda2acaf9fffa0163c45b929ef3</originalsourceid><addsrcrecordid>eNqFkEFLAzEUhIMoWKs_QdiTt61JdpNNPCnFqlDxoueQTV40ZZvUZIv237tL61VPbx58MwyD0CXBM4IFvsaYUsIFn1GM-Uyy8WFHaEIEqUuKG3mMJiNTjtApOst5NbycSz5BN8_RQufDe2EhGwh2lEanNobC-vjtLRQ-rMD0PoY8yKL_gCIa0OEcnTjdZbg43Cl6W9y_zh_L5cvD0_xuWZqqoX0pWxh6tE3LRFtXwlLJAerWNJwxZ4kRlBPZGKupNtpJ55zGhFemZq2kElw1RVf73E2Kn1vIvVr7oWrX6QBxmxWVFRuy5L8gkUwIWZMBZHvQpJhzAqc2ya912imC1Tip-p1UjZOqw6SD73bv88HFtNZfMXVW9XrXxeSSDsZnVf0d8QMrfn1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19588941</pqid></control><display><type>article</type><title>Modeling descending carbon dioxide injections in the ocean</title><source>Taylor & Francis</source><creator>Wannamaker, Eric J. ; Adams, E. Eric</creator><creatorcontrib>Wannamaker, Eric J. ; Adams, E. Eric</creatorcontrib><description>An integral double plume model is used to explore the fate of solid CO2 hydrate particles released continuously into a quiescent ocean for the purposes of CO2 sequestration. Such a release is desirable because hydrate particles are negatively buoyant and dissolution of CO2 enhances this negative buoyancy through the solute density effect. Plume depth and thickness are shown to increase with CO2 mass loading and initial hydrate particle diameter, and exceed the equivalent rise height and thickness associated with positively buoyant droplet releases. The depths also greatly exceed those associated with a single particle release, highlighting the importance of the "plume" effect. Plumes initially composed of multiple particle sizes produce greater maximum plume depth, but similar average plume depth and dilution compared with plumes composed of homogeneous particles, suggesting that adequate simulations can be made using a single particle size. Although the model is valid only for discharge to quiescent receiving water, analysis shows the effects of an ambient current decrease with increasing mass flow rate or decreasing particle size, making results relevant for most likely release scenarios.</description><identifier>ISSN: 0022-1686</identifier><identifier>EISSN: 1814-2079</identifier><identifier>DOI: 10.1080/00221686.2006.9521685</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Freshwater</subject><ispartof>Journal of hydraulic research, 2006-01, Vol.44 (3), p.324-337</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-9be814b7b58b438d296ee4bc7655fd1c826197cda2acaf9fffa0163c45b929ef3</citedby><cites>FETCH-LOGICAL-c372t-9be814b7b58b438d296ee4bc7655fd1c826197cda2acaf9fffa0163c45b929ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00221686.2006.9521685$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00221686.2006.9521685$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Wannamaker, Eric J.</creatorcontrib><creatorcontrib>Adams, E. Eric</creatorcontrib><title>Modeling descending carbon dioxide injections in the ocean</title><title>Journal of hydraulic research</title><description>An integral double plume model is used to explore the fate of solid CO2 hydrate particles released continuously into a quiescent ocean for the purposes of CO2 sequestration. Such a release is desirable because hydrate particles are negatively buoyant and dissolution of CO2 enhances this negative buoyancy through the solute density effect. Plume depth and thickness are shown to increase with CO2 mass loading and initial hydrate particle diameter, and exceed the equivalent rise height and thickness associated with positively buoyant droplet releases. The depths also greatly exceed those associated with a single particle release, highlighting the importance of the "plume" effect. Plumes initially composed of multiple particle sizes produce greater maximum plume depth, but similar average plume depth and dilution compared with plumes composed of homogeneous particles, suggesting that adequate simulations can be made using a single particle size. Although the model is valid only for discharge to quiescent receiving water, analysis shows the effects of an ambient current decrease with increasing mass flow rate or decreasing particle size, making results relevant for most likely release scenarios.</description><subject>Freshwater</subject><issn>0022-1686</issn><issn>1814-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEUhIMoWKs_QdiTt61JdpNNPCnFqlDxoueQTV40ZZvUZIv237tL61VPbx58MwyD0CXBM4IFvsaYUsIFn1GM-Uyy8WFHaEIEqUuKG3mMJiNTjtApOst5NbycSz5BN8_RQufDe2EhGwh2lEanNobC-vjtLRQ-rMD0PoY8yKL_gCIa0OEcnTjdZbg43Cl6W9y_zh_L5cvD0_xuWZqqoX0pWxh6tE3LRFtXwlLJAerWNJwxZ4kRlBPZGKupNtpJ55zGhFemZq2kElw1RVf73E2Kn1vIvVr7oWrX6QBxmxWVFRuy5L8gkUwIWZMBZHvQpJhzAqc2ya912imC1Tip-p1UjZOqw6SD73bv88HFtNZfMXVW9XrXxeSSDsZnVf0d8QMrfn1p</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Wannamaker, Eric J.</creator><creator>Adams, E. Eric</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20060101</creationdate><title>Modeling descending carbon dioxide injections in the ocean</title><author>Wannamaker, Eric J. ; Adams, E. Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-9be814b7b58b438d296ee4bc7655fd1c826197cda2acaf9fffa0163c45b929ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Freshwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wannamaker, Eric J.</creatorcontrib><creatorcontrib>Adams, E. Eric</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydraulic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wannamaker, Eric J.</au><au>Adams, E. Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling descending carbon dioxide injections in the ocean</atitle><jtitle>Journal of hydraulic research</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>44</volume><issue>3</issue><spage>324</spage><epage>337</epage><pages>324-337</pages><issn>0022-1686</issn><eissn>1814-2079</eissn><abstract>An integral double plume model is used to explore the fate of solid CO2 hydrate particles released continuously into a quiescent ocean for the purposes of CO2 sequestration. Such a release is desirable because hydrate particles are negatively buoyant and dissolution of CO2 enhances this negative buoyancy through the solute density effect. Plume depth and thickness are shown to increase with CO2 mass loading and initial hydrate particle diameter, and exceed the equivalent rise height and thickness associated with positively buoyant droplet releases. The depths also greatly exceed those associated with a single particle release, highlighting the importance of the "plume" effect. Plumes initially composed of multiple particle sizes produce greater maximum plume depth, but similar average plume depth and dilution compared with plumes composed of homogeneous particles, suggesting that adequate simulations can be made using a single particle size. Although the model is valid only for discharge to quiescent receiving water, analysis shows the effects of an ambient current decrease with increasing mass flow rate or decreasing particle size, making results relevant for most likely release scenarios.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00221686.2006.9521685</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1686 |
ispartof | Journal of hydraulic research, 2006-01, Vol.44 (3), p.324-337 |
issn | 0022-1686 1814-2079 |
language | eng |
recordid | cdi_proquest_miscellaneous_19588941 |
source | Taylor & Francis |
subjects | Freshwater |
title | Modeling descending carbon dioxide injections in the ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20descending%20carbon%20dioxide%20injections%20in%20the%20ocean&rft.jtitle=Journal%20of%20hydraulic%20research&rft.au=Wannamaker,%20Eric%20J.&rft.date=2006-01-01&rft.volume=44&rft.issue=3&rft.spage=324&rft.epage=337&rft.pages=324-337&rft.issn=0022-1686&rft.eissn=1814-2079&rft_id=info:doi/10.1080/00221686.2006.9521685&rft_dat=%3Cproquest_cross%3E29356559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19588941&rft_id=info:pmid/&rfr_iscdi=true |