Open Resonator Electric Spaser

The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-12, Vol.11 (12), p.12573-12582
Hauptverfasser: Liu, Bobo, Zhu, Weiren, Gunapala, Sarath D, Stockman, Mark I, Premaratne, Malin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12582
container_issue 12
container_start_page 12573
container_title ACS nano
container_volume 11
creator Liu, Bobo
Zhu, Weiren
Gunapala, Sarath D
Stockman, Mark I
Premaratne, Malin
description The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.
doi_str_mv 10.1021/acsnano.7b06735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1958540813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958540813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</originalsourceid><addsrcrecordid>eNp1kDtrwzAUhUVpadK0c7eQsVCcXEnWaywhfUAg0Ad0E7Isg4NtuZI99N_XxW62TvcM3zlwP4RuMawxELwxNjam8WuRAReUnaE5VpQnIPnn-SkzPENXMR4BmJCCX6IZUTAEBXO0PLSuWb266BvT-bDaVc52obSrt9ZEF67RRWGq6G6mu0Afj7v37XOyPzy9bB_2iaGUdklhcuBMci6toqJQeeZIqiwIKqTNKQdFrGQqI6xgGFtKU5FyIjnGeQFMEbpAd-NuG_xX72Kn6zJaV1Wmcb6PGismWQoS0wHdjKgNPsbgCt2GsjbhW2PQv1L0JEVPUobGchrvs9rlJ_7PwgDcj8DQ1Effh2b49d-5H5XgakU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958540813</pqid></control><display><type>article</type><title>Open Resonator Electric Spaser</title><source>American Chemical Society Journals</source><creator>Liu, Bobo ; Zhu, Weiren ; Gunapala, Sarath D ; Stockman, Mark I ; Premaratne, Malin</creator><creatorcontrib>Liu, Bobo ; Zhu, Weiren ; Gunapala, Sarath D ; Stockman, Mark I ; Premaratne, Malin</creatorcontrib><description>The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b06735</identifier><identifier>PMID: 29087690</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-12, Vol.11 (12), p.12573-12582</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</citedby><cites>FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</cites><orcidid>0000-0002-2419-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b06735$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b06735$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29087690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bobo</creatorcontrib><creatorcontrib>Zhu, Weiren</creatorcontrib><creatorcontrib>Gunapala, Sarath D</creatorcontrib><creatorcontrib>Stockman, Mark I</creatorcontrib><creatorcontrib>Premaratne, Malin</creatorcontrib><title>Open Resonator Electric Spaser</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDtrwzAUhUVpadK0c7eQsVCcXEnWaywhfUAg0Ad0E7Isg4NtuZI99N_XxW62TvcM3zlwP4RuMawxELwxNjam8WuRAReUnaE5VpQnIPnn-SkzPENXMR4BmJCCX6IZUTAEBXO0PLSuWb266BvT-bDaVc52obSrt9ZEF67RRWGq6G6mu0Afj7v37XOyPzy9bB_2iaGUdklhcuBMci6toqJQeeZIqiwIKqTNKQdFrGQqI6xgGFtKU5FyIjnGeQFMEbpAd-NuG_xX72Kn6zJaV1Wmcb6PGismWQoS0wHdjKgNPsbgCt2GsjbhW2PQv1L0JEVPUobGchrvs9rlJ_7PwgDcj8DQ1Effh2b49d-5H5XgakU</recordid><startdate>20171226</startdate><enddate>20171226</enddate><creator>Liu, Bobo</creator><creator>Zhu, Weiren</creator><creator>Gunapala, Sarath D</creator><creator>Stockman, Mark I</creator><creator>Premaratne, Malin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2419-4431</orcidid></search><sort><creationdate>20171226</creationdate><title>Open Resonator Electric Spaser</title><author>Liu, Bobo ; Zhu, Weiren ; Gunapala, Sarath D ; Stockman, Mark I ; Premaratne, Malin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bobo</creatorcontrib><creatorcontrib>Zhu, Weiren</creatorcontrib><creatorcontrib>Gunapala, Sarath D</creatorcontrib><creatorcontrib>Stockman, Mark I</creatorcontrib><creatorcontrib>Premaratne, Malin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bobo</au><au>Zhu, Weiren</au><au>Gunapala, Sarath D</au><au>Stockman, Mark I</au><au>Premaratne, Malin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Resonator Electric Spaser</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-12-26</date><risdate>2017</risdate><volume>11</volume><issue>12</issue><spage>12573</spage><epage>12582</epage><pages>12573-12582</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29087690</pmid><doi>10.1021/acsnano.7b06735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2419-4431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-12, Vol.11 (12), p.12573-12582
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1958540813
source American Chemical Society Journals
title Open Resonator Electric Spaser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Resonator%20Electric%20Spaser&rft.jtitle=ACS%20nano&rft.au=Liu,%20Bobo&rft.date=2017-12-26&rft.volume=11&rft.issue=12&rft.spage=12573&rft.epage=12582&rft.pages=12573-12582&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b06735&rft_dat=%3Cproquest_cross%3E1958540813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958540813&rft_id=info:pmid/29087690&rfr_iscdi=true