Open Resonator Electric Spaser
The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-12, Vol.11 (12), p.12573-12582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12582 |
---|---|
container_issue | 12 |
container_start_page | 12573 |
container_title | ACS nano |
container_volume | 11 |
creator | Liu, Bobo Zhu, Weiren Gunapala, Sarath D Stockman, Mark I Premaratne, Malin |
description | The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications. |
doi_str_mv | 10.1021/acsnano.7b06735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1958540813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958540813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</originalsourceid><addsrcrecordid>eNp1kDtrwzAUhUVpadK0c7eQsVCcXEnWaywhfUAg0Ad0E7Isg4NtuZI99N_XxW62TvcM3zlwP4RuMawxELwxNjam8WuRAReUnaE5VpQnIPnn-SkzPENXMR4BmJCCX6IZUTAEBXO0PLSuWb266BvT-bDaVc52obSrt9ZEF67RRWGq6G6mu0Afj7v37XOyPzy9bB_2iaGUdklhcuBMci6toqJQeeZIqiwIKqTNKQdFrGQqI6xgGFtKU5FyIjnGeQFMEbpAd-NuG_xX72Kn6zJaV1Wmcb6PGismWQoS0wHdjKgNPsbgCt2GsjbhW2PQv1L0JEVPUobGchrvs9rlJ_7PwgDcj8DQ1Effh2b49d-5H5XgakU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958540813</pqid></control><display><type>article</type><title>Open Resonator Electric Spaser</title><source>American Chemical Society Journals</source><creator>Liu, Bobo ; Zhu, Weiren ; Gunapala, Sarath D ; Stockman, Mark I ; Premaratne, Malin</creator><creatorcontrib>Liu, Bobo ; Zhu, Weiren ; Gunapala, Sarath D ; Stockman, Mark I ; Premaratne, Malin</creatorcontrib><description>The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b06735</identifier><identifier>PMID: 29087690</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-12, Vol.11 (12), p.12573-12582</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</citedby><cites>FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</cites><orcidid>0000-0002-2419-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b06735$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b06735$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29087690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bobo</creatorcontrib><creatorcontrib>Zhu, Weiren</creatorcontrib><creatorcontrib>Gunapala, Sarath D</creatorcontrib><creatorcontrib>Stockman, Mark I</creatorcontrib><creatorcontrib>Premaratne, Malin</creatorcontrib><title>Open Resonator Electric Spaser</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDtrwzAUhUVpadK0c7eQsVCcXEnWaywhfUAg0Ad0E7Isg4NtuZI99N_XxW62TvcM3zlwP4RuMawxELwxNjam8WuRAReUnaE5VpQnIPnn-SkzPENXMR4BmJCCX6IZUTAEBXO0PLSuWb266BvT-bDaVc52obSrt9ZEF67RRWGq6G6mu0Afj7v37XOyPzy9bB_2iaGUdklhcuBMci6toqJQeeZIqiwIKqTNKQdFrGQqI6xgGFtKU5FyIjnGeQFMEbpAd-NuG_xX72Kn6zJaV1Wmcb6PGismWQoS0wHdjKgNPsbgCt2GsjbhW2PQv1L0JEVPUobGchrvs9rlJ_7PwgDcj8DQ1Effh2b49d-5H5XgakU</recordid><startdate>20171226</startdate><enddate>20171226</enddate><creator>Liu, Bobo</creator><creator>Zhu, Weiren</creator><creator>Gunapala, Sarath D</creator><creator>Stockman, Mark I</creator><creator>Premaratne, Malin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2419-4431</orcidid></search><sort><creationdate>20171226</creationdate><title>Open Resonator Electric Spaser</title><author>Liu, Bobo ; Zhu, Weiren ; Gunapala, Sarath D ; Stockman, Mark I ; Premaratne, Malin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-fad0658668c937f9dbe249c07378cd36092c859b25f511c33474628611df05923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bobo</creatorcontrib><creatorcontrib>Zhu, Weiren</creatorcontrib><creatorcontrib>Gunapala, Sarath D</creatorcontrib><creatorcontrib>Stockman, Mark I</creatorcontrib><creatorcontrib>Premaratne, Malin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bobo</au><au>Zhu, Weiren</au><au>Gunapala, Sarath D</au><au>Stockman, Mark I</au><au>Premaratne, Malin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Resonator Electric Spaser</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-12-26</date><risdate>2017</risdate><volume>11</volume><issue>12</issue><spage>12573</spage><epage>12582</epage><pages>12573-12582</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29087690</pmid><doi>10.1021/acsnano.7b06735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2419-4431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-12, Vol.11 (12), p.12573-12582 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1958540813 |
source | American Chemical Society Journals |
title | Open Resonator Electric Spaser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Resonator%20Electric%20Spaser&rft.jtitle=ACS%20nano&rft.au=Liu,%20Bobo&rft.date=2017-12-26&rft.volume=11&rft.issue=12&rft.spage=12573&rft.epage=12582&rft.pages=12573-12582&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b06735&rft_dat=%3Cproquest_cross%3E1958540813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958540813&rft_id=info:pmid/29087690&rfr_iscdi=true |