Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust
The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2017-12, Vol.89 (23), p.12682-12689 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12689 |
---|---|
container_issue | 23 |
container_start_page | 12682 |
container_title | Analytical chemistry (Washington) |
container_volume | 89 |
creator | Božičević, Alen Dobrzyński, Maciej De Bie, Hans Gafner, Frank Garo, Eliane Hamburger, Matthias |
description | The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery. |
doi_str_mv | 10.1021/acs.analchem.7b02221 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1958540487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982175855</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-b2030ffb2d8e38a7eb7e98bbbf1c082aae5a9a31804dba6315d50f7aa2fbe8e83</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPhDxCyxIYFmT47ycRZjtIWKk1ppYC6jJ6T55I2iQfbAfFLfCWezhQkFqwsWedcyzqMvRawFCDFCbZ-iRMO7Vcal4UGKaV4whYil5CslJJP2QIA0kQWAEfshfd3AEKAWD1nR7IEVazKbMF-redgRwzU8cqOW3QY-u_ELymgtkMfiF87a_qhn265NXyD7pb4pkrO6ovLmp9iQF5T8LyfOE58XZ2exOsb6-61tfe8nncL665L-ul9BLq9UQ2zD-QeNqPHP9EPfrWlKant7FriN6T59YDBWDfyc0f0ILxkzwwOnl4dzmP25fzsc_Ux2Vx9uKjWmwQzkYZES0jBGC07RanCgnRBpdJaG9GCkoiUY4mpUJB1GlepyLscTIEojSZFKj1m7_a7W2e_zeRDM_a-pWHAiezsG1HmKs8gU0VE3_6D3sUfxCg7SklRRDKPVLanWme9d2SaretHdD8bAc2uZRNbNo8tm0PLqL05jM96pO6P9BgvArAHdvrfh_-3-RtR2K3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982175855</pqid></control><display><type>article</type><title>Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Božičević, Alen ; Dobrzyński, Maciej ; De Bie, Hans ; Gafner, Frank ; Garo, Eliane ; Hamburger, Matthias</creator><creatorcontrib>Božičević, Alen ; Dobrzyński, Maciej ; De Bie, Hans ; Gafner, Frank ; Garo, Eliane ; Hamburger, Matthias</creatorcontrib><description>The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b02221</identifier><identifier>PMID: 29087694</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Applications programs ; Chemistry ; Chromatography ; Chromatography, Liquid - statistics & numerical data ; Cluster Analysis ; Clustering ; Computational Biology - methods ; Computer programs ; Data analysis ; Data Mining - methods ; Data processing ; Drug discovery ; Honey ; Honey - analysis ; Instrumentation ; Internet ; Metabolites ; Metabolomics - methods ; Molecular ions ; Open source software ; Plant extracts ; R&D ; Research & development ; Retention time ; Sensitivity analysis ; Software ; Spectrometry, Mass, Electrospray Ionization - statistics & numerical data ; Statistical methods ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2017-12, Vol.89 (23), p.12682-12689</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-b2030ffb2d8e38a7eb7e98bbbf1c082aae5a9a31804dba6315d50f7aa2fbe8e83</citedby><cites>FETCH-LOGICAL-a413t-b2030ffb2d8e38a7eb7e98bbbf1c082aae5a9a31804dba6315d50f7aa2fbe8e83</cites><orcidid>0000-0001-9331-273X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b02221$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b02221$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29087694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Božičević, Alen</creatorcontrib><creatorcontrib>Dobrzyński, Maciej</creatorcontrib><creatorcontrib>De Bie, Hans</creatorcontrib><creatorcontrib>Gafner, Frank</creatorcontrib><creatorcontrib>Garo, Eliane</creatorcontrib><creatorcontrib>Hamburger, Matthias</creatorcontrib><title>Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Chromatography, Liquid - statistics & numerical data</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computational Biology - methods</subject><subject>Computer programs</subject><subject>Data analysis</subject><subject>Data Mining - methods</subject><subject>Data processing</subject><subject>Drug discovery</subject><subject>Honey</subject><subject>Honey - analysis</subject><subject>Instrumentation</subject><subject>Internet</subject><subject>Metabolites</subject><subject>Metabolomics - methods</subject><subject>Molecular ions</subject><subject>Open source software</subject><subject>Plant extracts</subject><subject>R&D</subject><subject>Research & development</subject><subject>Retention time</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Spectrometry, Mass, Electrospray Ionization - statistics & numerical data</subject><subject>Statistical methods</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURS0EokPhDxCyxIYFmT47ycRZjtIWKk1ppYC6jJ6T55I2iQfbAfFLfCWezhQkFqwsWedcyzqMvRawFCDFCbZ-iRMO7Vcal4UGKaV4whYil5CslJJP2QIA0kQWAEfshfd3AEKAWD1nR7IEVazKbMF-redgRwzU8cqOW3QY-u_ELymgtkMfiF87a_qhn265NXyD7pb4pkrO6ovLmp9iQF5T8LyfOE58XZ2exOsb6-61tfe8nncL665L-ul9BLq9UQ2zD-QeNqPHP9EPfrWlKant7FriN6T59YDBWDfyc0f0ILxkzwwOnl4dzmP25fzsc_Ux2Vx9uKjWmwQzkYZES0jBGC07RanCgnRBpdJaG9GCkoiUY4mpUJB1GlepyLscTIEojSZFKj1m7_a7W2e_zeRDM_a-pWHAiezsG1HmKs8gU0VE3_6D3sUfxCg7SklRRDKPVLanWme9d2SaretHdD8bAc2uZRNbNo8tm0PLqL05jM96pO6P9BgvArAHdvrfh_-3-RtR2K3s</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Božičević, Alen</creator><creator>Dobrzyński, Maciej</creator><creator>De Bie, Hans</creator><creator>Gafner, Frank</creator><creator>Garo, Eliane</creator><creator>Hamburger, Matthias</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9331-273X</orcidid></search><sort><creationdate>20171205</creationdate><title>Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust</title><author>Božičević, Alen ; Dobrzyński, Maciej ; De Bie, Hans ; Gafner, Frank ; Garo, Eliane ; Hamburger, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-b2030ffb2d8e38a7eb7e98bbbf1c082aae5a9a31804dba6315d50f7aa2fbe8e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Chromatography, Liquid - statistics & numerical data</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computational Biology - methods</topic><topic>Computer programs</topic><topic>Data analysis</topic><topic>Data Mining - methods</topic><topic>Data processing</topic><topic>Drug discovery</topic><topic>Honey</topic><topic>Honey - analysis</topic><topic>Instrumentation</topic><topic>Internet</topic><topic>Metabolites</topic><topic>Metabolomics - methods</topic><topic>Molecular ions</topic><topic>Open source software</topic><topic>Plant extracts</topic><topic>R&D</topic><topic>Research & development</topic><topic>Retention time</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Spectrometry, Mass, Electrospray Ionization - statistics & numerical data</topic><topic>Statistical methods</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Božičević, Alen</creatorcontrib><creatorcontrib>Dobrzyński, Maciej</creatorcontrib><creatorcontrib>De Bie, Hans</creatorcontrib><creatorcontrib>Gafner, Frank</creatorcontrib><creatorcontrib>Garo, Eliane</creatorcontrib><creatorcontrib>Hamburger, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Božičević, Alen</au><au>Dobrzyński, Maciej</au><au>De Bie, Hans</au><au>Gafner, Frank</au><au>Garo, Eliane</au><au>Hamburger, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-12-05</date><risdate>2017</risdate><volume>89</volume><issue>23</issue><spage>12682</spage><epage>12689</epage><pages>12682-12689</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29087694</pmid><doi>10.1021/acs.analchem.7b02221</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9331-273X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2017-12, Vol.89 (23), p.12682-12689 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1958540487 |
source | MEDLINE; American Chemical Society Journals |
subjects | Algorithms Applications programs Chemistry Chromatography Chromatography, Liquid - statistics & numerical data Cluster Analysis Clustering Computational Biology - methods Computer programs Data analysis Data Mining - methods Data processing Drug discovery Honey Honey - analysis Instrumentation Internet Metabolites Metabolomics - methods Molecular ions Open source software Plant extracts R&D Research & development Retention time Sensitivity analysis Software Spectrometry, Mass, Electrospray Ionization - statistics & numerical data Statistical methods Workflow |
title | Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Comparative%20Metabolite%20Profiling%20of%20Large%20LC-ESIMS%20Data%20Sets%20in%20an%20ACD/MS%20Workbook%20Suite%20Add-in,%20and%20Data%20Clustering%20on%20a%20New%20Open-Source%20Web%20Platform%20FreeClust&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Boz%CC%8Cic%CC%8Cevic%CC%81,%20Alen&rft.date=2017-12-05&rft.volume=89&rft.issue=23&rft.spage=12682&rft.epage=12689&rft.pages=12682-12689&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b02221&rft_dat=%3Cproquest_cross%3E1982175855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982175855&rft_id=info:pmid/29087694&rfr_iscdi=true |